根據(jù)下列條件,求二次函數(shù)解析式.拋物線經(jīng)過(guò)點(diǎn)(-3,2)、(-1,-1)、(1,3),并寫出該二次函數(shù)開(kāi)口方向,頂點(diǎn)坐標(biāo)及對(duì)稱軸直線.
分析:設(shè)二次函數(shù)解析式為y=ax2+bx+c(a≠0),然后利用待定系數(shù)法求出二次函數(shù)解析式,再根據(jù)頂點(diǎn)坐標(biāo)公式列式計(jì)算即可得解.
解答:解:設(shè)二次函數(shù)解析式為y=ax2+bx+c(a≠0),
∵拋物線經(jīng)過(guò)點(diǎn)(-3,2)、(-1,-1)、(1,3),
9a-3b+c=2
a-b+c=-1
a+b+c=3
,
解得
a=
7
8
b=2
c=
1
8
,
所以,y=
7
8
x2+2x+
1
8
;
7
8
>0,
∴開(kāi)口向上,
∵-
b
2a
=-
2
7
8
=-
8
7
,
4ac-b2
4a
=
7
8
×
1
8
-22
7
8
=-
57
56
,
所以,頂點(diǎn)(-
8
7
,-
57
56
),
對(duì)稱軸:直線x=-
8
7
點(diǎn)評(píng):本題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的開(kāi)口方向,頂點(diǎn),對(duì)稱軸,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,求二次函數(shù)的解析式
(1)圖象經(jīng)過(guò)點(diǎn)(-1,3),(1,3),(2,6);
(2)拋物線頂點(diǎn)坐標(biāo)為(-1,9),并且與y軸交于(0,-8);
(3)拋物線的對(duì)稱軸是直線x=1,與x軸的一個(gè)交點(diǎn)為(-2,0),與y軸交于點(diǎn)(0,12);
(4)圖象頂點(diǎn)坐標(biāo)是(2,-5),且過(guò)原點(diǎn);
(5)圖象與x軸的交點(diǎn)坐標(biāo)是(-1,0),(-3,0)且函數(shù)有最小值-5;
(6)當(dāng)x=2時(shí),函數(shù)的最大值是1,且圖象與x軸兩個(gè)交點(diǎn)之間的距離為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,求二次函數(shù)的解析式:
(1)圖象的頂點(diǎn)為(2,3),且過(guò)點(diǎn)(3,1);
(2)圖象經(jīng)過(guò)點(diǎn)(1,-2),(0,-1),(-2,-11).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,求二次函數(shù)的關(guān)系式
(1)已知拋物線的頂點(diǎn)在(1,-2),且過(guò)點(diǎn)(2,3);
(2)已知拋物線經(jīng)過(guò)(2,0)、(0,-2)和(-2,3)三點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,求二次函數(shù)的關(guān)系式:
(1)拋物線經(jīng)過(guò)點(diǎn)(0,3)、(1,0)、(3,0);
(2)拋物線頂點(diǎn)坐標(biāo)是(-1,-2),且經(jīng)過(guò)點(diǎn)(1,10).

查看答案和解析>>

同步練習(xí)冊(cè)答案