6、由一個平面圖形可以得到它關于某條直線對稱的圖形,這個圖形與原圖形的
形狀、大小
完全一樣.
分析:根據(jù)軸對稱的定義可得,這兩個圖形全等,則形狀、大小完全一樣.
解答:解:由一個平面圖形可以得到它關于某條直線對稱的圖形,這個圖形與原圖形的 形狀、大小完全一樣.
故答案為:形狀、大小.
點評:此題主要考查軸對稱的定義:如果一個圖形沿著一條直線對折,直線兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)九年義務教育三年制初級中學教科書代數(shù)第三冊中,有以下幾段文字:“對于坐標平面內任意一點M,都有唯一的一對有序實數(shù)(x,y)和它對應;對于任意一對有序實數(shù)(x,y),在坐標平面內都有唯一的一點M和它對應,也就是說,坐標平面內的點與有序實數(shù)對是一一對應的.”“一般地,對于一個函數(shù),如果把自變量x與函數(shù)y的每對對應值分別作為點的橫坐標與縱坐標,在坐標平面內描出相應的點,這些點所組成的圖形,就是這個函數(shù)的圖象.”“實際上,所有一次函數(shù)的圖象都是一條直線.”“因為兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線,就可以了.”由此可知:滿足函數(shù)關系式的有序實數(shù)對所對應的點,一定在這個函數(shù)的圖象上;反之,函數(shù)圖象上的點的坐標,一定滿足這個函數(shù)的關系式.另外,已知直線上兩點的坐標,便可求出這條直線所對應的一次函數(shù)的解析式.
問題1:已知點A(m,1)在直線y=2x-1上,求m的方法是:
 
,∴m=
 
;已知點B(-2,n)在直線y=2x-1上,求n的方法是:
 
,∴n=
 
;
問題2:已知某個一次函數(shù)的圖象經(jīng)過點P(3,5)和Q(-4,-9),求這個一次函數(shù)的解析式時,一般先
 
,再由已知條件可得
 
.解得:
 
.∴滿足已知條件的一次函數(shù)的解析式為:
 
.這個一次函數(shù)的圖象與兩坐標軸的交點坐標為:
 
,在右側給定的平面直角坐標系中,描出這兩個點,并畫出這個函數(shù)的圖象.像解決問題2這樣,
 
的方法,叫做待定系數(shù)法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過點A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因為S△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結論:像圖1這樣,
同底等高的兩三角形面積相等
同底等高的兩三角形面積相等

(2)結論證明:如果一條直線(線段)把一個平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱為這個平面圖形的一條面積等分線(段),如,平行四變形的一條對角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過點B作BE∥AC,交DC延長線于點E,連接點A和DE的中點P,則AP即為梯形ABCD的面積等分線段,請你寫出這個結論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否做出四邊形ABCD的面積等分線(段)?若能,請畫出面積等分線(用鋼筆或圓珠筆畫圖,不用寫作法),不要證明

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•河北)九年義務教育三年制初級中學教科書代數(shù)第三冊中,有以下幾段文字:“對于坐標平面內任意一點M,都有唯一的一對有序實數(shù)(x,y)和它對應;對于任意一對有序實數(shù)(x,y),在坐標平面內都有唯一的一點M和它對應,也就是說,坐標平面內的點與有序實數(shù)對是一一對應的.”“一般地,對于一個函數(shù),如果把自變量x與函數(shù)y的每對對應值分別作為點的橫坐標與縱坐標,在坐標平面內描出相應的點,這些點所組成的圖形,就是這個函數(shù)的圖象.”“實際上,所有一次函數(shù)的圖象都是一條直線.”“因為兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線,就可以了.”由此可知:滿足函數(shù)關系式的有序實數(shù)對所對應的點,一定在這個函數(shù)的圖象上;反之,函數(shù)圖象上的點的坐標,一定滿足這個函數(shù)的關系式.另外,已知直線上兩點的坐標,便可求出這條直線所對應的一次函數(shù)的解析式.
問題1:已知點A(m,1)在直線y=2x-1上,求m的方法是:______,∴m=______;已知點B(-2,n)在直線y=2x-1上,求n的方法是:______,∴n=______;
問題2:已知某個一次函數(shù)的圖象經(jīng)過點P(3,5)和Q(-4,-9),求這個一次函數(shù)的解析式時,一般先______,再由已知條件可得______

查看答案和解析>>

科目:初中數(shù)學 來源:2013年山東省青島市中考數(shù)學模擬試卷(八)(解析版) 題型:解答題

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過點A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因為S△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結論:像圖1這樣,______.
(2)結論證明:如果一條直線(線段)把一個平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱為這個平面圖形的一條面積等分線(段),如,平行四變形的一條對角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過點B作BE∥AC,交DC延長線于點E,連接點A和DE的中點P,則AP即為梯形ABCD的面積等分線段,請你寫出這個結論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否做出四邊形ABCD的面積等分線(段)?若能,請畫出面積等分線(用鋼筆或圓珠筆畫圖,不用寫作法),不要證明

查看答案和解析>>

科目:初中數(shù)學 來源:2013年山東省青島市中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

(1)自主閱讀:如圖1,AD∥BC,連接AB、AC、BD、CD,則S△ABC=S△BCD
證明:分別過點A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因為S△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我們可以得到以下的結論:像圖1這樣,______.
(2)結論證明:如果一條直線(線段)把一個平面圖形的面積分成相等的兩部分,我們把這條直線(線段)稱為這個平面圖形的一條面積等分線(段),如,平行四變形的一條對角線就是平形四邊形的一條面積等分線段.
①如圖2,梯形ABCD中AB∥DC,連接AC,過點B作BE∥AC,交DC延長線于點E,連接點A和DE的中點P,則AP即為梯形ABCD的面積等分線段,請你寫出這個結論成立的理由:
②如圖3,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點A能否做出四邊形ABCD的面積等分線(段)?若能,請畫出面積等分線(用鋼筆或圓珠筆畫圖,不用寫作法),不要證明

查看答案和解析>>

同步練習冊答案