a是不為1的有理數(shù),我們把數(shù)學(xué)公式稱(chēng)為a的差倒數(shù).如:2的差倒數(shù)是數(shù)學(xué)公式,-1的差倒數(shù)是數(shù)學(xué)公式,已知數(shù)學(xué)公式,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類(lèi)推,則a2010=


  1. A.
    數(shù)學(xué)公式
  2. B.
    4
  3. C.
    數(shù)學(xué)公式
  4. D.
    無(wú)法確定
B
分析:把稱(chēng)為a的差倒數(shù),已知,可依次計(jì)算出a2、a3、a4、a5,即可發(fā)現(xiàn)每3個(gè)數(shù)為一個(gè)循環(huán),然后用2010除以3,即可得出答案.
解答:已知,
a1的差倒數(shù)a2==;
a2的差倒數(shù)a3==4;
a3的差倒數(shù)a4==-;
a4的差倒數(shù)a5==;
…依此類(lèi)推,=670,
所以,a2010=a3=4.
故選B.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)倒數(shù)和數(shù)字變化類(lèi)知識(shí)點(diǎn)的理解和掌握,解答此題的關(guān)鍵是依次計(jì)算出a2、a3、a4、a5,找出數(shù)字變化的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

a是不為1的有理數(shù),我們把
1
1-a
稱(chēng)為a的差倒數(shù).如:2的差倒數(shù)是
1
1-2
=-1
,-1的差倒數(shù)是
1
1-(-1)
=
1
2
,已知a1=-
1
3
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類(lèi)推,則a2010=( 。
A、
3
4
B、4
C、-
1
3
D、無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:a是不為1的有理數(shù),我們把
1
1-a
稱(chēng)為a的差倒數(shù).
如:2的差倒數(shù)是
1
1-2
=-1
,-1的差倒數(shù)是
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類(lèi)推,試探求a2009=寫(xiě)出簡(jiǎn)要的過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、若a>b,c是不為零的有理數(shù),則(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:a是不為1的有理數(shù),我們把
1
1-a
稱(chēng)為a的衍生數(shù).如:2的衍生數(shù)是
1
1-2
=-1
,-1的衍生數(shù)是
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的衍生數(shù),a3是a2的衍生數(shù),a4是a3的衍生數(shù),…,依此類(lèi)推,則a2012=
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知.a(chǎn)是不為1的有理數(shù),我們把
1
1-a
稱(chēng)為a的差倒數(shù).如:3的差倒數(shù)是
1
1-3
=-
1
2
,-2的差倒數(shù)是
1
1-(-2)
=
1
3
.已知a1=2,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類(lèi)推,則a2013=
1
2
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案