【題目】體育委員帶了500元錢去買體育用品,已知一個足球a元,一個籃球b元.則代數(shù)式500-3a-2b表示的意義為___________________________________________________

【答案】體育委員買了3個足球和2個籃球后剩余的經(jīng)費

【解析】試題分析:買一個足球a元,一個籃球b元,∴3a表示委員買了3個足球,2b表示買了2個籃球,

代數(shù)式500﹣3a﹣2b:表示委員買了3個足球、2個籃球,剩余的錢.

故答案為:體育委員買了3個足球、2個籃球,剩余的錢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一元二次方程x2﹣6x+m=0有兩個相等的實數(shù)根,則m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知直線y=x上一點P(1,1),C為y軸上一點,連接PC,線段PC繞點P順時針旋轉(zhuǎn)90°至線段PD,過點D作直線AB⊥x軸,垂足為B,直線AB與直線y=x交于點A,且BD=3AD,連接CD,直線CD與直線y=x交于點Q,則點Q的坐標(biāo)為______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx 的函數(shù),自變量x的取值范圍是x >0,下表是yx 的幾組對應(yīng)值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.

下面是小騰的探究過程,請補充完整:

(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(2)根據(jù)畫出的函數(shù)圖象,寫出:

x=4對應(yīng)的函數(shù)值y約為________;

該函數(shù)的一條性質(zhì):__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為鍛煉身體一直堅持步行上下班.已知學(xué)校到李老師家總路程為2000米.一天,李老師下班后,以45/分的速度從學(xué)校往家走,走到離學(xué)校900米時,正好遇到一個朋友,停下又聊了半小時,之后以110/分的速度走回了家.李老師回家過程中,離家的路程s(米)與所用時間t(分)之間的關(guān)系如圖所示.

1)求a,bc的值;

2)求李老師從學(xué)校到家的總時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有G20,峰,會3個球,這些球除標(biāo)注外都相同,攪勻后從中任意摸出1個球,不放回,攪勻后再從中任意摸出1個球,不放回,再從中摸出最后1個球.

(1)請畫樹狀圖分析兩次摸球情況;

(2)小明和小亮玩這個摸球游戲,小明摸到三個球的順序依次為G20、峰、會,或峰、會、G20,小明勝,否則小亮勝.請判斷該游戲?qū)﹄p方是否公平?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩條邊長分別是73,則此三角形的周長為____________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(﹣4,4),點B的坐標(biāo)為(0,1).以點A為直角頂點作∠CAD=90°,射線ACy軸的負半軸于點C,射線ADx軸的負半軸于點D

1求直線AB的解析式;

2OD﹣OC的值是否為定值?如果是,求出它的值;如果不是,求出它的變化范圍;

3平面內(nèi)存在點P,使得AB、CP四點能構(gòu)成菱形,

P點坐標(biāo)為

②點Q是射線AC上的動點,求PQ+DQ的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=5cm,BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設(shè)運動時間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時,四邊形ACNM的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

同步練習(xí)冊答案