【題目】如圖,直線AB、CD、MN相交與點O,FO⊥BO,OM平分∠DOF
(1)請直接寫出圖中所有與∠AON互余的角: .
(2)若∠AOC=∠FOM,求∠MOD與∠AON的度數(shù).
【答案】(1)∠FOM,∠MOD,∠CON;(2)20°,70°
【解析】
(1)根據(jù)垂直的定義可得∠BOF=∠AOF=90°,由角平分線的定義和對頂角相等可得與∠AON互余的角有:∠FOM,∠MOD,∠CON;
(2)設∠MOD的度數(shù)為x°,用含x的式子表示出∠FOD和∠AOC的度數(shù),然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,據(jù)此列方程求解,再由(1)中∠MOD與∠AON互余可得出∠AON的度數(shù).
解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,
∴∠BOM+∠FOM=90°,
又∠BOM=∠AON,∴∠AON+∠FOM=90°.
∵OM平分∠DOF,∴∠DOM=∠FOM,
又∵∠DOM=∠CON,
∴與∠AON互余的角有:∠FOM,∠MOD,∠CON;
(2)設∠MOD的度數(shù)為x°,
∵OM平分∠FOD,
∴∠MOD=∠FOM=x°,
∴∠FOD=2x°,∠AOC=∠FOM=°,
又∵FO⊥BO,∠AOC=∠BOD,
∴∠FOD+∠AOC=90°,
即2x+=90,
解得:x=20.
即∠MOD=20°,
由(1)可知∠MOD與∠AON互余,
∴∠AON=90°-∠MOD=90°-20°=70°.
故∠MOD的度數(shù)為20°,∠AON的度數(shù)為70°.
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一個內角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是 ;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料一,在平面里有兩點,,若為起點,為終點,則把有方向且有長度的線段叫做向量,記為:,并且可用坐標表示這個向量,表示方法為:
,向量的長度可以表示成
例如:,則,
即所以
材料二:若,,則
若時,則.
根據(jù)材料解決下列問題:
已知中,,,
(1)________ ___________
(2)當時,求證:是直角三角形.
(3)若,,求使恒成立的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示,若△ABC內一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點是法國數(shù)學家和教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架的云梯斜靠在一豎直的墻上,這時為.
(1)求這個梯子的底端距墻的垂直距離有多遠;
(2)當,且時,AC的長是多少米;
(3)如果梯子的底端向墻一側移動了2米,那么梯子的頂端向上滑動的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖,頂點為(-1,0),下列結論:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正確結論的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“元旦”期間,某文具店購進100只兩種型號的文具進行銷售,其進價和售價如下表:
型號 | 進價(元/只) | 售價(元/只) |
型 | 10 | 12 |
型 | 15 | 23 |
(1)該店用1300元可以購進,兩種型號的文具各多少只?
(2)若把(1)中所購進,兩種型號的文具全部銷售完,利潤率超過40%沒有?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.
(1)如圖1,求∠EFB的度數(shù);
(2)若三角板ACB的位置保持不動,將三角板CDE繞其直角頂點C順時針方向旋轉.
①當旋轉至如圖2所示位置時,恰好CD∥AB,則∠ECB的度數(shù)為 ;
②若將三角板CDE繼續(xù)繞點C旋轉,直至回到圖1位置.在這一過程中,是否還會存在△CDE其中一邊與AB平行?如果存在,請你畫出示意圖,并直接寫出相應的∠ECB的大。蝗绻淮嬖,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學因式分解的結果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com