如圖,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.
(1)求證:在運(yùn)動(dòng)過(guò)程中,不管取何值,都有S△AED=2S△DGC
(2)當(dāng)取何值時(shí),△DFE與△DMG全等.
分析:(1)由角平分線的性質(zhì)可知DF=DM,所以△AED和△DEG的面積轉(zhuǎn)化為底AE和CG的比值,根據(jù)路程=速度×?xí)r間求出AE和CG的長(zhǎng)度即可證明在運(yùn)動(dòng)過(guò)程中,不管取何值,都有S△AED=2S△DGC
(2)若△DFE與△DMG全等,則EF=MG,利用已知條件求出EF和MG的長(zhǎng)度,建立方程解方程即可求出運(yùn)動(dòng)的時(shí)間.
解答:(1)證明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,
∴DF=DM,
∵S△AED=
1
2
AE•DF,S△DGC=
1
2
CG•DM,
S△ADE
S△DGC
=
AE
CG

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),
AE
CG
=2,
S△ADE
S△DGC
=2,
∴在運(yùn)動(dòng)過(guò)程中,不管取何值,都有S△AED=2S△DGC
(2)解:設(shè)時(shí)間為t時(shí),△DFE與△DMG全等,則EF=MG,
①當(dāng)M在線段CG的延長(zhǎng)線上時(shí),
∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),
∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,
即10-2t=4-t,
解得:t=6,
當(dāng)t=6時(shí),MG=-2,所以舍去;
②當(dāng)M在線段CG上時(shí),
∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),
∴EF=AF-AE=10-2t,MG=AM-(AC-CG)=t-4,
即10-2t=t-4,
解得:t=
14
3
,
綜上所述當(dāng)t=
14
3
時(shí),△DFE與△DMG全等.
點(diǎn)評(píng):本題考查了全等三角形的判定和性質(zhì)、角平分線的性質(zhì)、三角形的面積公式以及動(dòng)點(diǎn)問(wèn)題,解題的難點(diǎn)在于第二問(wèn)中求運(yùn)動(dòng)的時(shí)間,此題容易漏解和錯(cuò)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案