【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交點(diǎn)C,拋物線過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式.
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)E,連接BE,與直線AC相交于點(diǎn)F,當(dāng)時(shí),求的值.
(3)點(diǎn)N是拋物線對(duì)稱軸上一點(diǎn),在(2)的條件下,若點(diǎn)E位于對(duì)稱軸左側(cè),在拋物線上是否存在一點(diǎn)M,使以M,N,E,B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)的值為或;(3)存在,M的坐標(biāo)為或或.
【解析】
(1)先求出A、C兩點(diǎn)坐標(biāo),再用待定系數(shù)法求解;
(2)如圖,過(guò)點(diǎn)E作軸于點(diǎn)H,過(guò)點(diǎn)F作軸于點(diǎn)G,則易得△BFG∽△BEH,設(shè)點(diǎn)E的橫坐標(biāo)為t,則,利用相似三角形的性質(zhì)可求出點(diǎn)F的坐標(biāo),再根據(jù)EH與FG的關(guān)系列出關(guān)于t的方程,解方程即可求出t的值,然后在Rt△EBH中即可求出的值;
(3)①當(dāng)EB為平行四邊形的邊時(shí),分兩種情況:點(diǎn)M在對(duì)稱軸右側(cè)時(shí),BN為對(duì)角線與點(diǎn)M在對(duì)稱軸左側(cè)時(shí),BM為對(duì)角線,利用平移的性質(zhì)即可求出結(jié)果;②當(dāng)EB為平行四邊形的對(duì)角線時(shí),利用平行四邊形對(duì)角線的性質(zhì)和中點(diǎn)坐標(biāo)公式求解即可.
解:(1)在中,當(dāng)時(shí),當(dāng)時(shí),
∴、,
∵拋物線的圖象經(jīng)過(guò)A、C兩點(diǎn),
∴,
解得,
∴拋物線的解析式為;
(2)令,解得,,∴,
設(shè)點(diǎn)E的橫坐標(biāo)為t,則,
如圖,過(guò)點(diǎn)E作軸于點(diǎn)H,過(guò)點(diǎn)F作軸于點(diǎn)G,則,∴△BFG∽△BEH,
∵,
∴,
∵,
∴,
∴點(diǎn)F的橫坐標(biāo)為,
∴,
∴,
∴,
解得,,
當(dāng)時(shí),,
當(dāng)時(shí),,
∴,,
當(dāng)點(diǎn)E的坐標(biāo)為時(shí),在中,,,
∴,
∴;
同理,當(dāng)點(diǎn)E的坐標(biāo)為時(shí),,
∴的值為或;
(3)∵點(diǎn)N在對(duì)稱軸上,∴,
∵點(diǎn)E位于對(duì)稱軸左側(cè),∴.
①當(dāng)EB為平行四邊形的邊時(shí),分兩種情況:
(Ⅰ)點(diǎn)M在對(duì)稱軸右側(cè)時(shí),BN為對(duì)角線,
∵,,,,
∴,當(dāng)時(shí),,
∴;
(Ⅱ)點(diǎn)M在對(duì)稱軸左側(cè)時(shí),BM為對(duì)角線,
∵,,,,
∴,
當(dāng)時(shí),,
∴;
②當(dāng)EB為平行四邊形的對(duì)角線時(shí),
∵,,,
∴,
∴,
當(dāng)時(shí),,
∴;
綜上所述,M的坐標(biāo)為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃銷售某種產(chǎn)品,現(xiàn)邀請(qǐng)生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場(chǎng)試銷10天.兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無(wú)固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.兩個(gè)廠家銷售情況如下表:
甲廠家銷量(件) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 2 | 4 | 2 | 1 | 1 |
乙廠家銷量(件) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 1 | 2 | 2 | 4 | 1 |
(1)現(xiàn)從乙廠家試銷的10天中隨機(jī)抽取1天,求這1天的返利不超過(guò)160元的概率;
(2)商場(chǎng)擬甲、乙兩個(gè)廠家中選擇一個(gè)長(zhǎng)期銷售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O的直徑AB和弦CD相交于點(diǎn)E,且點(diǎn)B是劣弧DF的中點(diǎn).
(1)求證:△EBD≌△EBF;
(2)已知AE=1,EB=5,∠DEB=30°,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:
;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則.
其中正確的有
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)A在y軸上,點(diǎn)C在x軸上,BC⊥x軸,tan∠ACO=.延長(zhǎng)AC到點(diǎn)D,過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)G,且DG=GE,連接CE,反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)B,和CE交于點(diǎn)F,且CF:FE=2:1.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC,垂足為F,延長(zhǎng)CD交GB的延長(zhǎng)線于點(diǎn)P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=3,AC=4,點(diǎn)M,Q分別是邊AB,BC上的動(dòng)點(diǎn)(點(diǎn)M不與A,B重合),且MQ⊥BC,過(guò)點(diǎn)M作BC的平行線MN,交AC于點(diǎn)N,連接NQ,設(shè)BQ為x.
(1)試說(shuō)明不論x為何值時(shí),總有△QBM∽△ABC;
(2)是否存在一點(diǎn)Q,使得四邊形BMNQ為平行四邊形,試說(shuō)明理由;
(3)當(dāng)x為何值時(shí),四邊形BMNQ的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)如圖1,垂美四邊形ABCD的對(duì)角線AC,BD交于O.求證:AB2+CD2=AD2+BC2;
(2)如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)BE,CG,GE.
①求證:四邊形BCGE是垂美四邊形;
②若AC=4,AB=5,求GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若,是一元二次方程的兩個(gè)根,且,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com