【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( )

A.
B.
C.
D.

【答案】C
【解析】解:∵一次函數(shù)y=ax+b經過一、二、四象限,

∴a<0,b>0,

∵反比例函數(shù)y= 的圖象在一、三象限,

∴c>0,

∵a<0,

∴二次函數(shù)y=ax2+bx+c的圖象的開口向下,

∵b>0,

>0,

∵c>0,

∴與y軸的正半軸相交,

所以答案是:C.

【考點精析】通過靈活運用一次函數(shù)的圖象和性質和反比例函數(shù)的圖象,掌握一次函數(shù)是直線,圖像經過仨象限;正比例函數(shù)更簡單,經過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】[閱讀]

在平面直角坐標系中,以任意兩點Px1,y1)、Qx2,y2)為端點的線段中點坐標為,).

[運用]

(1)如圖,矩形ONEF的對角線相交于點MON、OF分別在x軸和y軸上O為坐標原點,E的坐標為(4,3),則點M的坐標為

(2)在直角坐標系中A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構成平行四邊形的頂點,求點D的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

1)圖②中的陰影部分的正方形的邊長等于 .(用含,的代數(shù)式表示)

2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積:

方法①:

方法②:

3)觀察圖②,直接寫出、、這三個代數(shù)式之間的等量關系.

4)根據(jù)(3)題中的等量關系,若,,求圖②中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD頂點A,D在⊙O上,邊BC經過⊙O上一定P,且PF平分∠AFC,邊 AB,CD分別與⊙O相交于點E,F(xiàn),連接EF.

(1)求證:BC是⊙O的切線;
(2)若FC=2,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、F在線段AB上,點E、G分別在線段BCAC上,CDEF,∠1=∠2.

(1)判斷DGBC的位置關系,并說明理由;

(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,ABCD有怎樣的位置關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,A(0,4),C(2,0).

(1)畫出線段AC關于y軸的對稱線段AB;
(2)將線段CA繞點C順時針旋轉一個角,得到對應的線段CD,使得AD∥x軸,請畫出線段CD;
(3)若直線y=kx平分四邊形ABCD的面積,請求出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A和點C分別在直線MN和直線EF上,點B在直線外,BAN=α,∠BCF=β

1)如圖1,若MNEF,則B= (用α,β的式子表示,不寫證明過程)

2)在(1)的條件下,點T在直線MN與直線EF之間,∠MAT=BAN,∠TCB=2TCE,求BT之間的數(shù)量關系.

3)如圖2,若MN不平行于EF,直線AC平分MAB,且平分ECB,B= (用αβ的式子表示,不寫證明過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列4個命題:①兩邊及其中一邊上的中線對應相等的兩個三角形全等;②兩邊及其中一邊上的高對應相等的兩個三角形全等;③兩邊及一角對應相等的兩個三角形全等;④有兩角及其中一角的角平分線對應相等的兩個三角形全等.其中正確的的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.

(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.

查看答案和解析>>

同步練習冊答案