已知拋物線y=ax2+bx+c過點(-1,2),對稱軸是直線x=1,頂點在雙曲線上,求此拋物線的解析式.
【答案】分析:由拋物線的對稱軸是直線x=1,得頂點的橫坐標為1,而頂點在雙曲線上,得到頂點坐標為(1,4),可設拋物線的解析式為y=a(x-1)2+4,再把(-1,2)代入解析式得,求出a即可.
解答:解:∵拋物線的對稱軸是直線x=1,
∴頂點的橫坐標為1,
又∵頂點在雙曲線上,
∴x=1,y=4,即頂點坐標為(1,4),
設拋物線的解析式為y=a(x-1)2+4,
把(-1,2)代入解析式得,a=-,
所以拋物線的解析式為:y=-(x-1)2+4=-x2+x+
點評:本題考查了二次函數(shù)的頂點式:y=a(x-k)2+h,其中a≠0,頂點坐標為(k,h).也考查了拋物線對稱軸的性質(zhì)以及點在圖象上點的坐標滿足解析式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案