【題目】已知:AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,E是直線AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B、G重合),直線DE交⊙O于點(diǎn)F,直線CF交直線AB于點(diǎn)P.設(shè)⊙O的半徑為r.
(1)如圖1,當(dāng)點(diǎn)E在直徑AB上時(shí),試證明:
(2)當(dāng)點(diǎn)E在直徑AB(或BA)的延長(zhǎng)線上時(shí),以如圖2點(diǎn)E的位置為例,請(qǐng)你畫(huà)出符合題意的圖形,標(biāo)注上字母,(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)成立,理由見(jiàn)解析.
【解析】
試題(1)如圖,連接FO并延長(zhǎng)交⊙O于Q,連接DQ.由FQ是⊙O直徑得到∠QFD+∠Q=90°,又由CD⊥AB得到∠P+∠C=90°,然后利用已知條件即可得到∠QFD=∠P,然后即可證明△FOE∽△POF,最后利用相似三角形的性質(zhì)即可解決問(wèn)題;
(2)(1)中的結(jié)論成立.如圖2,依題意畫(huà)出圖形,連接FO并延長(zhǎng)交⊙O于M,連接CM.由FM是⊙O直徑得到∠M+∠CFM=90°,又由CD⊥AB,得到∠E+∠D=90°,接著利用已知條件即可證明∠CFM=∠E,然后利用已知條件證明△POF∽△FOE,最后利用相似三角形的性質(zhì)即可證明題目的結(jié)論.
試題解析:(1)證明:如圖1,連接FO并延長(zhǎng)交⊙O于Q,連接DQ.
∵FQ是⊙O直徑,
∴∠FDQ=90°.
∴∠QFD+∠Q=90°.
∵CD⊥AB,
∴∠P+∠C=90°.
∵∠Q=∠C,
∴∠QFD=∠P.
∵∠FOE=∠POF,
∴△FOE∽△POF.
∴.
∴OEOP=OF2=r2.
(2)解:(1)中的結(jié)論成立.
理由:如圖2,依題意畫(huà)出圖形,連接FO并延長(zhǎng)交⊙O于M,連接CM.
∵FM是⊙O直徑,
∴∠FCM=90°,
∴∠M+∠CFM=90°.
∵CD⊥AB,
∴∠E+∠D=90°.
∵∠M=∠D,
∴∠CFM=∠E.
∵∠POF=∠FOE,
∴△POF∽△FOE.
∴,
∴OEOP=OF2=r2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠A=2∠BCD,點(diǎn)E在AB的延長(zhǎng)線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直線CM⊥BC,動(dòng)點(diǎn)D從點(diǎn)C開(kāi)始沿射線CB方向以每秒3厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)E也同時(shí)從點(diǎn)C開(kāi)始在直線CM上以每秒1厘米的速度向遠(yuǎn)離C點(diǎn)的方向運(yùn)動(dòng),連接AD、AE,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)請(qǐng)直接寫(xiě)出CD、CE的長(zhǎng)度(用含有t的代數(shù)式表示):CD= cm,CE= cm;
(2)當(dāng)t為多少時(shí),△ABD的面積為12 cm2?
(3)請(qǐng)利用備用圖探究,當(dāng)t為多少時(shí),△ABD≌△ACE?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別從B、C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC、CD運(yùn)動(dòng),到點(diǎn)C、D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了這樣一個(gè)問(wèn)題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”用現(xiàn)代語(yǔ)言表述為:如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)E,AE = 1寸,CD = 10寸,求直徑AB的長(zhǎng).請(qǐng)你解答這個(gè)問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請(qǐng)判斷:
(1)△ABC的形狀;
(2)AD是否過(guò)△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形、、…按如圖放置,其中點(diǎn)、、…在軸正半軸上,點(diǎn)、、…在直線上,依此類(lèi)推…,則點(diǎn)的坐標(biāo)是________;點(diǎn)的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com