【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD∥BC,AC=8,BD=6,.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求ABCD的面積.

【答案】
(1)證明:∵O是AC的中點,

∴OA=OC,

∵AD∥BC,

∴∠ADO=∠CBO,

在△AOD和△COB中,

,

∴△AOD≌△COB,

∴OD=OB,

∴四邊形ABCD是平行四邊形


(2)解:∵四邊形ABCD是平行四邊形,AC⊥BD,

∴四邊形ABCD是菱形,

ABCD的面積= ACBD=24


【解析】(1)由已知條件易證△AOD≌△COB,由此可得OD=OB,進而可證明四邊形ABCD是平行四邊形;(2)由(1)和已知條件可證明四邊形ABCD是菱形,由菱形的面積公式即可得解.
【考點精析】認真審題,首先需要了解平行四邊形的判定與性質(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC邊上的高,BE平分∠△ABC交AD于點E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點O是邊AC上一個動點,過點O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點E、F.

(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,求證:三角形的三條角平分線相交于一點,并且這一點到三邊的距離相等;

2)如圖2,若的平分線與外角的平分線相交于點連接,若,則 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校學生會對七年級部分學生的課外閱讀量進行了隨機調查,整理調查結果,并根據(jù)調查結果繪制了不完整的圖表,如圖所示:

本數(shù)(本)

頻數(shù)(人數(shù))

頻率

5

a

0.3

6

10

0.2

7

20

b

8

5

0.1

合計

c

1

1)統(tǒng)計表中的b   c   ;請將頻數(shù)分布直方圖補充完整.

2)所有被調查學生課外閱讀的平均本數(shù)為   本,課外閱讀書本數(shù)的中位數(shù)為   本.

3)若該校七年級共有1200名學生,估計該校七年級學生課外閱讀6本及以下的人數(shù)為   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一件文化衫價格為18元,一個書包的價格比一件文化衫價格的2倍還少6元.

(1)求一個書包的價格是多少元?

(2)某公司出資1 800元,拿出不少于350元但不超過400元的經(jīng)費獎勵山區(qū)小學的優(yōu)秀學生,剩余經(jīng)費還能為多少名山區(qū)小學的學生每人購買一個書包和一件文化衫?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=6,AC=8BC=10,P為邊BC上一動點,PEABE,PFACF,MEF中點,則AM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC邊長為10,PAB上,QBC延長線,CQPA,過點PPEACE,過點PPFBQ,交AC邊于點F,連接PQAC于點D,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點ECD的延長線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE

2)求證:CA平分∠BCD;

3)如圖(2),設AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

同步練習冊答案