【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c(c>0)的頂點(diǎn)為D,與y軸的交點(diǎn)為C.過(guò)點(diǎn)C的直線CA與拋物線交于另一點(diǎn)A(點(diǎn)A在對(duì)稱軸左側(cè)),點(diǎn)B在AC的延長(zhǎng)線上,連結(jié)OA,OB,DA和DB.
(1)如圖1,當(dāng)AC∥x軸時(shí),
①已知點(diǎn)A的坐標(biāo)是(﹣2,1),求拋物線的解析式;
②若四邊形AOBD是平行四邊形,求證:b2=4c.
(2)如圖2,若b=﹣2,=,是否存在這樣的點(diǎn)A,使四邊形AOBD是平行四邊形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)①y=﹣x2﹣2x+1;②證明見(jiàn)解析;(2)存在這樣的點(diǎn)A,A(﹣,)
【解析】
(1)①由點(diǎn)A(﹣2,1)得到C(0,1),利用待定系數(shù)法即可求解;
②作DE⊥x軸于E,交AB于點(diǎn)F,利用頂點(diǎn)坐標(biāo)及點(diǎn)C的坐標(biāo)求得DF=,利用“AAS”證得△AFD≌△BCO,得到DF=OC,即可證得結(jié)論;
(2)由題意知頂點(diǎn)坐標(biāo)D(﹣1,c+1),設(shè)點(diǎn)A(m,﹣m2﹣2m+c),利用“AAS”證得△AFD≌△BCO,作如圖的輔助線,證得△ANF∽△AMC,結(jié)合已知=,求得,利用比例線段即可求解.
(1)①∵AC∥x軸,點(diǎn)A(﹣2,1),
∴C(0,1),
將點(diǎn)A(﹣2,1),C(0,1)代入拋物線解析式中,得:
,
∴,
∴拋物線的解析式為y=﹣x2﹣2x+1;
②如圖1,過(guò)點(diǎn)D作DE⊥x軸于E,交AB于點(diǎn)F,
∵AC∥x軸,
∴EF=OC=c,
∵點(diǎn)D是拋物線的頂點(diǎn)坐標(biāo),
∴D(,),
∴DF=DE﹣EF==,
∵四邊形AOBD是平行四邊形,
∴AD=OB,AD∥OB,
∴∠DAF=∠OBC,
∵∠AFD=∠BCO=90°,
∴△AFD≌△BCO(AAS),
∴DF=OC,
∴=c,
即b2=4c;
(2)如圖2,
∵b=﹣2.
∴拋物線的解析式為y=﹣x2﹣2x+c,
∴頂點(diǎn)坐標(biāo)D(﹣1,c+1),
假設(shè)存在這樣的點(diǎn)A使四邊形AOBD是平行四邊形,
設(shè)點(diǎn)A(m,﹣m2﹣2m+c)(m<0),
過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,交AB于F,
∴∠AFD=∠EFC=∠BCO,
∵四邊形AOBD是平行四邊形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∴△AFD≌△BCO(AAS),
∴AF=BC,DF=OC,
過(guò)點(diǎn)A作AM⊥y軸于M,交DE于N,
∴DE∥CO,
∴△ANF∽△AMC,
∴=,
∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,
∴,
∴,
∴點(diǎn)A的縱坐標(biāo)為﹣(﹣)2﹣2×(﹣)+c=c﹣<c,
∵AM∥x軸,
∴點(diǎn)M的坐標(biāo)為(0,c﹣),N(﹣1,c﹣),
∴CM=c﹣(c﹣)=,
∵點(diǎn)D的坐標(biāo)為(﹣1,c+1),
∴DN=(c+1)﹣(c﹣)=,
∵DF=OC=c,
∴FN=DN﹣DF=﹣c,
∵=,
∴,
∴c=,
∴c﹣=,
∴點(diǎn)A縱坐標(biāo)為,
∴A(﹣,),
∴存在這樣的點(diǎn)A,使四邊形AOBD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)第一次用11000元購(gòu)進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購(gòu)進(jìn)同款機(jī)器人,所購(gòu)進(jìn)數(shù)量是第一次的2倍,但單價(jià)貴了10元.
(1)求該商家第一次購(gòu)進(jìn)機(jī)器人多少個(gè)?
(2)若在這兩次機(jī)器人的銷售中,該商場(chǎng)全部售完,而且售價(jià)都是130元,問(wèn)該商場(chǎng)總共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,以為直徑的圓交于點(diǎn),過(guò)點(diǎn)的⊙的切線交于點(diǎn)若,則⊙的半徑是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷售甲,乙兩種型號(hào)水杯,進(jìn)價(jià)和售價(jià)均保持不變,其中甲種型號(hào)水杯進(jìn)價(jià)為25元/個(gè),乙種型號(hào)水杯進(jìn)價(jià)為45元/個(gè),下表是前兩月兩種型號(hào)水杯的銷售情況:
時(shí)間 | 銷售數(shù)量(個(gè)) | 銷售收入(元)(銷售收入=售價(jià)×銷售數(shù)量) | |
甲種型號(hào) | 乙種型號(hào) | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號(hào)水杯的售價(jià);
(2)第三月超市計(jì)劃再購(gòu)進(jìn)甲、乙兩種型號(hào)水杯共80個(gè),這批水杯進(jìn)貨的預(yù)算成本不超過(guò)2600元,且甲種型號(hào)水杯最多購(gòu)進(jìn)55個(gè),在80個(gè)水杯全部售完的情況下設(shè)購(gòu)進(jìn)甲種號(hào)水杯a個(gè),利潤(rùn)為w元,寫出w與a的函數(shù)關(guān)系式,并求出第三月的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點(diǎn)B在x軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小吳家準(zhǔn)備購(gòu)買一臺(tái)電視機(jī),小吳將收集到的某地區(qū)A、B、C三種品牌電視機(jī)銷售情況的有關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:
根據(jù)上述三個(gè)統(tǒng)計(jì)圖,請(qǐng)解答:
(1)2014~2019年三種品牌電視機(jī)銷售總量最多的是 品牌,月平均銷售量最穩(wěn)定的是 品牌.
(2)2019年其他品牌的電視機(jī)年銷售總量是多少萬(wàn)臺(tái)?
(3)貨比三家后,你建議小吳家購(gòu)買哪種品牌的電視機(jī)?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點(diǎn)E,F,其中點(diǎn)E是AD的中點(diǎn).
(1)求證:∠CAD=∠CBA.
(2)求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC頂點(diǎn)A、C分別在ON、OM上,點(diǎn)D是AB邊上的中點(diǎn),當(dāng)點(diǎn)A在邊ON上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在邊OM上運(yùn)動(dòng),則OD的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,濟(jì)南市為加快網(wǎng)絡(luò)建設(shè),某通信公司在一個(gè)坡度為的山腰上建了一座垂直于水平面的信號(hào)通信塔,在距山腳處水平距離的點(diǎn)處測(cè)得通信塔底處的仰角是,通信塔頂處的仰角是.則通信塔的高度為( )(結(jié)果保留整數(shù),參考數(shù)據(jù):,)
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com