如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
108
【解析】
試題分析:連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得OA=OB,根據(jù)等邊對(duì)等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點(diǎn)O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對(duì)等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對(duì)等角求出∠COE,再利用三角形的內(nèi)角和定理列式計(jì)算即可得解.
解:如圖,連接OB、OC
∵∠BAC=54°,AO為∠BAC的平分線,
∴∠BAO=∠BAC=×54°=27°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=(180°-54°)=63°,
∵DO是AB的垂直平分線,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC-∠ABO=63°-27°=36°,
∵DO是AB的垂直平分線,AO為∠BAC的平分線,
∴點(diǎn)O是△ABC的外心,
∴OB=OC,
∴∠OCB=∠OBC=36°,
∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.
考點(diǎn):垂直平分線的性質(zhì),等腰三角形三線合一的性質(zhì),等邊對(duì)等角的性質(zhì),翻折變換的性質(zhì)
點(diǎn)評(píng):此類問(wèn)題綜合性較強(qiáng),難度較大,作輔助線,構(gòu)造出等腰三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com