7.在數(shù)軸上近似地表示下列各數(shù),4,-1.5,0,$\sqrt{2}$,-π,$\sqrt{9}$,并用“<”連接:

分析 先在數(shù)軸上表示各個(gè)數(shù),再根據(jù)數(shù)軸上表示的數(shù),右邊的數(shù)總比左邊的數(shù)大比較即可.

解答 解:在數(shù)軸上表示為:
-π<-1.5<0<$\sqrt{2}$<$\sqrt{9}$<4.

點(diǎn)評(píng) 本題考查了實(shí)數(shù)的大小比較和數(shù)軸,能正確在數(shù)軸上表示各個(gè)數(shù)是解此題的關(guān)鍵,注意:在數(shù)軸上表示各個(gè)數(shù),再根據(jù)數(shù)軸上表示的數(shù),右邊的數(shù)總比左邊的數(shù)大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.鹽城市“創(chuàng)建文明城市”活動(dòng)如火如荼的展開.某中學(xué)為了搞好“創(chuàng)建文明城市”活動(dòng)的宣傳,校學(xué)生會(huì)就本校學(xué)生對(duì)鹽城“市情市況”的了解程度進(jìn)行了一次調(diào)查測(cè)試.經(jīng)過對(duì)測(cè)試成績(jī)的分析,得到如下圖所示的兩幅不完整的統(tǒng)計(jì)圖(A:59分及以下;B:60-69分;C:70-79分;D:80-89分;E:90-100分).請(qǐng)你根據(jù)圖中提供的信息解答以下問題:
(1)求該校共有多少名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出“60-69分”部分所對(duì)應(yīng)的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.一個(gè)數(shù)的平方等于$\frac{4}{9}$,則這個(gè)數(shù)是±$\frac{2}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.等腰三角形一個(gè)內(nèi)角為80°,那么這個(gè)等腰三角形的另兩角為50°,50°或80°,20°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.一列數(shù)據(jù)$\frac{1}{3}$、$\frac{2}{9}$、$\frac{3}{27}$、$\frac{4}{81}$…按此排列,那么第5個(gè)數(shù)據(jù)是$\frac{5}{243}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,AB=AC=5cm,BC+8,點(diǎn)P為BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過點(diǎn)P作射線PM交AC于點(diǎn)M,使∠APM=∠B;
(1)求證:△ABP∽△PCM;
(2)設(shè)BP=x,CM=y,求y與x的函數(shù)解析式;
(3)當(dāng)△APM為等腰三角形時(shí),求PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,拋物線y=a2+bx+c(a>0)交x軸于A(4,0)、B(8,0)兩點(diǎn),交y軸于點(diǎn)C,且$\frac{OC}{OB}$=$\frac{1}{2}$.
(1)求拋物線的解析式;
(2)若動(dòng)直線EF(EF∥x軸)從點(diǎn)C開始,以每秒1個(gè)長(zhǎng)度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng).連結(jié)FP,設(shè)運(yùn)動(dòng)時(shí)間t秒.
①當(dāng)t為何值時(shí),$\frac{EF•OP}{EF+OP}$的值最大,并求出最大值;
②設(shè)AC與EF交于點(diǎn)M,求當(dāng)t為何值時(shí),M、P、A、F所圍成的圖形是平行四邊形?等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.閱讀下列材料:
1×2=$\frac{1}{3}$(1×2×3-0×1×2)
2×3=$\frac{1}{3}$(2×3×4-1×2×3)
3×4=$\frac{1}{3}$(3×4×5-2×3×4)
以上三個(gè)等式相加可得:
1×2+2×3+3×4=$\frac{1}{3}$(1×2×3-0×1×2)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)=$\frac{1}{3}$(1×2×3-0×1×2+2×3×4-1×2×3×4×5-2×3×4)=$\frac{1}{3}$(3×4×5-0×1×2)=20
(1)計(jì)算:1×2+2×3+3×4+…+9×10+10×11(寫出過程);
(2)1×2+2×3+3×4+…+n×(n+1)=$\frac{1}{3}$n(n+1)(n+2);(直接寫出過程)
(3)根據(jù)上述方法,計(jì)算1×2×3+2×3×4+3×4×5+…+7×8×9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.如圖,已知∠DAE=22.5°,點(diǎn)C是射線AE上一點(diǎn),且線段AC=3,若點(diǎn)M和點(diǎn)N分別是射線AD和線段AC上的兩個(gè)動(dòng)點(diǎn),則MN+MC的最小值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案