【題目】如圖,OEOF分別是AC,BD的垂直平分線,垂足分別為EF,且ABCD,∠ABD120°,∠CDB38°,求∠OBD的度數(shù).

【答案】OBD41°

【解析】

連接OA,OC,根據(jù)線段垂直平分線的性質(zhì)得到OA=OC,OB=OD,證明△ABO≌△COD,根據(jù)全等三角形的性質(zhì)得到∠ABO=CDO,設(shè)∠OBD=ODB=α,∠ABO=CDO=β,解方程組即可求出∠OBD

解:連接OA,OC,

OEOF分別是AC,BD的垂直平分線,

OAOCOBOD,

ABCD

∴△ABO≌△CODSSS),

∴∠ABO=∠CDO

設(shè)∠OBD=∠ODBα,∠ABO=∠CDOβ

α+β120°,βα38°,

α41°,

∴∠OBD41°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn).

(1)分別求出一次函數(shù)與反比例函數(shù)的解析式;

(2)求OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,l1l2l3,l1l2間的距離為3, l2、l3間的距離為6,等邊△ABC三個(gè)頂點(diǎn)均在l1、l2、l3上,則△ABC的邊長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是一張等腰直角三角形紙板,∠C=Rt,AC=BC=2.要在這張紙板中剪出一個(gè)盡可能大的正方形(剪法如圖1所示),圖1中剪法稱為第1次剪取,記所得的正方形面積為S1;按照?qǐng)D1中的剪法,在余下的ADEBDF中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為S2(如圖2),則S2=_____;再在余下的四個(gè)三角形中,用同樣的方法分別剪取正方形,得到四個(gè)相同的正方形,稱為第3次剪取,并記這四個(gè)正方形的面積和為S3(如圖3);繼續(xù)操作下去則第2018次剪取后,S2018=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D是等邊ABC的邊AC上一點(diǎn),以BD為邊作等邊BDE,點(diǎn)C,EBD同側(cè),下列結(jié)論:①∠ABD30°;②CEAB;③CB平分∠ACE;④CEAD,其中錯(cuò)誤的有( 。

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程(2-a)x2+5x-3=0有實(shí)數(shù)解,則整數(shù)a的最大值是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng).

(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?

(2)如果P,Q分別從A,B同時(shí)出發(fā),△PBQ的面積能否等于8cm2?

(3)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于5cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線ABy=-x-b分別與x,y軸交于A6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OBOC=31

1)求點(diǎn)B的坐標(biāo);

2)求直線BC的解析式;

3)直線EFy=2x-kk≠0)交ABE,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BECD相交于點(diǎn)A,CF為∠BCD的平分線,EF為∠BED的平分線,EFCD交于點(diǎn)M,CFBE交于點(diǎn)N

1)若∠D70°,∠BED30°,則∠EMA   (度);

2)若∠B60°,∠BCD40°,則∠ENC   (度);

3)∠F與∠B、∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案