【題目】如圖,拋物線y=﹣2x2+4xx軸交于點O、A,把拋物線在x軸及其上方的部分記為C1,將C1y鈾為對稱軸作軸對稱得到C2,C2x軸交于點B,若直線yx+mC1C2共有3個不同的交點,則m的取值范圍是(

A. 0<m< B. m

C. 0m D. mm

【答案】A

【解析】

首先求出點A和點B的坐標,然后求出C2解析式,分別求出直線y=x+m與拋物線C1相切時m的值以及直線y=x+m過原點時m的值,結合圖形即可得到答案.

解得:x=0x=2,

則點A(2,0),B(2,0),

C1C2關于y鈾對稱,C1:

C2解析式為

y=x+mC1相切時,如圖所示:

解得

y=x+m過原點時,m=0,

∴當時直線y=x+mC1、C2共有3個不同的交點,

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)學活動課上,小麗為了測量校園內(nèi)旗桿AB的高度,站在教學樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°.已知旗桿與教學樓的距離BD=9m,請你幫她求出旗桿的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O內(nèi)切于ABC,BOC=105°,ACB=90°,AB=20cm.求BC、AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )

A. 賽跑中,兔子共休息了50分鐘

B. 烏龜在這次比賽中的平均速度是0.1米/分鐘

C. 兔子比烏龜早到達終點10分鐘

D. 烏龜追上兔子用了20分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC切⊙O于點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.

(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;

(2)求證:

(3)若BC=AB,求tanCDF的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為50cm,與水平桌面所形成的夾角∠OAM75°.由光源O射出的邊緣光線OC,OB與水平桌面所形成的夾角∠OCA,OBA分別為90°30°.(不考慮其他因素,結果精確到0.1cm.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.73)

(1)求該臺燈照亮水平桌面的寬度BC.

(2)人在此臺燈下看書,將其側(cè)面抽象成如圖2所示的幾何圖形,若書與水平桌面的夾角∠EFC60°,書的長度EF24cm,點P為眼睛所在位置,當點PEF 的垂直平分線上,且到EF距離約為34cm(人的正確看書姿勢是眼睛離書距離約1≈34cm)時,稱點P最佳視點”.試問:最佳視點P在不在燈光照射范圍內(nèi)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】州政府投資3個億擬建的恩施民族高中,它位于北緯31°,教學樓窗戶朝南,窗戶高度為h米,此地一年的冬至這一天的正午時刻太陽光與地面的夾角最小為α,夏至這一天的正午時刻太陽光與地面的夾角最大為β.若你是一名設計師,請你為教學樓的窗戶設計一個直角形遮陽蓬BCD,要求它既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)(如圖).根據(jù)測量測得∠α=32.6°,β=82.5°,h=2.2米.請你求出直角形遮陽蓬BCDBCCD的長各是多少?(結果精確到0.1米)

(參考數(shù)據(jù):sin32.6°=0.54,sin82.5°=0.99,tan32.6°=0.64,tan82.5°=7.60)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。

A. ①和② B. ②和③ C. ①和③ D. ②和④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條河的北岸有兩個目標MN,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知ABMN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.

(1)求點MAB的距離;(結果保留根號)

(2)B點又測得∠NBA=53°,求MN的長.(結果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

同步練習冊答案