【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。
【答案】
【解析】分析:設(shè)⊙P與邊AB,AO分別相切于點E、D,連接PE、PD、PA,用面積法可求出⊙P的半徑,然后通過三角形相似可求出CD,從而得到點P的坐標,就可求出k的值.
詳解:設(shè)⊙P與邊AB,AO分別相切于點E、D,連接PE、PD、PA,如圖所示.
則有PD⊥OA,PE⊥AB.
設(shè)⊙P的半徑為r,
∵AB=5,AC=1,
∴S△APB= ABPE=r,S△APC=ACPD=r.
∵∠AOB=90°,OA=4,AB=5,
∴OB=3.
∴S△ABC=ACOB=×1×3=.
∵S△ABC=S△APB+S△APC,
∴=r+r.
∴r=.
∴PD=.
∵PD⊥OA,∠AOB=90°,
∴∠PDC=∠BOC=90°.
∴PD∥BO.
∴△PDC∽△BOC.
∴.
∴PDOC=CDBO.
∴×(4-1)=3CD.
∴CD=.
∴OD=OC-CD=3-=.
∴點P的坐標為(,).
∵反比例函數(shù)y=(k≠0)的圖象經(jīng)過圓心P,
∴k=×=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸;
(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假山具有多方面的造景功能,與建筑、植物等組合成富于變化的景致.某公園有一座假山,小亮、小慧等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量這座假山的高度來檢驗自己掌握知識和運用知識的能力,如圖,在陽光下,小亮站在水平地面的D處,此時小亮身高的影子頂端與假山的影子頂端E重合,這時小亮身高CD的影長DE=2米,一段時間后,小亮從D點沿BD的方向走了3.6米到達G處,此時小亮身高的影子頂端與假山的影子頂端H重合,這時小亮身高的影長GH=2.4米,已知小亮的身高CD=FG=1.5米,點G,E,D均在直線BH上,AB⊥BH,CD⊥BH,GF⊥BH,請你根據(jù)題中提供的相關(guān)信息,求出假山的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通信公司策劃了兩種上網(wǎng)的月收費方式:
收費方式 | 月使用費/元 | 包時上網(wǎng)時間/ | 超時費/(元/) |
30 | 25 | 0.05 | |
設(shè)每月上網(wǎng)時間為,方式的收費金額分別為(元),(元),如圖是與之間函數(shù)關(guān)系的圖象.(友情提示:若累計上網(wǎng)時間不超出包時上網(wǎng)時間,則只收月使用費;若累計上網(wǎng)時間超出包時上網(wǎng)時間,則對超出部分再加收超時費)
(1) , , ;
(2)求
(3)若每月上網(wǎng)時間為31小時,請直接寫出選擇哪種方式能節(jié)省上網(wǎng)費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于給定的一個二次函數(shù),其圖象沿x軸翻折后,得到的圖象所對應(yīng)的二次函數(shù)稱為原二次函數(shù)的橫翻函數(shù).
(1)直接寫出二次函數(shù)y=2x2的橫翻函數(shù)的表達式.
(2)已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A(﹣3,1)、B(2,6).
①求b、c的值.
②求二次函數(shù)y=x2+bx+c的橫翻函數(shù)的頂點坐標.
③若將二次函數(shù)y=x2+bx+c的圖象位于A、B兩點間的部分(含A、B兩點)記為G,則當二次函數(shù)y=﹣x2﹣bx﹣c+m與G有且只有一個交點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長線于F,BG⊥AE于G,BG=,則△EFC的面積是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEC的面積相等,點E在BC邊上,DE∥AB交AC于點F,AB=12,EF=9,則DF的長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.
(1)求證:D是BC的中點;
(2)求證:△BEC∽△ADC;
(3)若CE=5,BD=6.5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com