甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.

(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

考點:

一次函數(shù)的應(yīng)用.

分析:

(1)設(shè)小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式為y1=k1x+b,由待定系數(shù)法根據(jù)圖象就可以求出解析式;

(2)先根據(jù)函數(shù)圖象求出甲乙的速度,然后與追擊問題就可以求出小亮追上小明的時間,就可以求出小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(3)先根據(jù)相遇問題建立方程就可以求出a值,10分鐘甲、乙走的路程就是相距的距離,14分鐘小明走的路程和小亮追到小明時的時間就可以補充完圖象.

解答:

解:(1)設(shè)小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式為y1=k1x+b,由圖象,得

解得:,

∴y1=﹣200x+2000;

(2)由題意,得

小明的速度為:2000÷40=50米/分,

小亮的速度為:2000÷10=200米/分,

∴小亮從甲地追上小明的時間為24×50÷(200﹣50)=8分鐘,

∴24分鐘時兩人的距離為:S=24×50=1200,32分鐘時S=0,

設(shè)S與x之間的函數(shù)關(guān)系式為:S=kx+b,由題意,得

,

解得:,

∴S=﹣150x+4800;

(3)由題意,得

a=2000÷(200+50)=8分鐘,

當(dāng)x=24時,S=1200

當(dāng)x=32時,S=0.

故描出相應(yīng)的點就可以補全圖象.

如圖:

點評:

本題時一道一次函數(shù)的綜合試題,考查了待定系數(shù)法求一次函數(shù)的解析式的運用,追擊問題與相遇問題在實際問題中的運用,描點法畫函數(shù)圖象的運用,解答時靈活運用路程、速度、時間之間的數(shù)量關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•淮安)甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y2(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.

(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.

(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(江蘇淮安卷)數(shù)學(xué)(解析版) 題型:解答題

甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.

(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;

(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y2(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.

查看答案和解析>>

同步練習(xí)冊答案