如圖,已知AB是⊙O的直徑,且AB為6,過(guò)B點(diǎn)作⊙O的切線CB與⊙O相切于點(diǎn)B,在半圓AB上有一點(diǎn)D使∠ABD=30°,BD的中點(diǎn)為E,連接OE并延長(zhǎng)OE與BC交于點(diǎn)C,連接CD.
(1)求證:CD是⊙O的切線.
(2)四邊形ABCD的周長(zhǎng)是多少?
(1)證明:連接OD,
∵OE是BD的中點(diǎn)且BO=DO,
∴OE⊥BD,
∴CE⊥BD,
∵BE=DE,
∴BC=DC,
∵OB=OD,OC=OC,
∴△OBC≌△ODC,
∵BC是⊙O的切線,
∴∠OBC=90°,
∴∠ODC=90°,
∴CD是⊙O的切線;

(2)∵BC是⊙O的切線,
∴∠OBC=90°,
∵∠ABD=30°,
∴∠DBC=60°,
∵BC=CD,
∴∠DBC=∠BDC=60°,
∴△BCD是等邊三角形,
∴BC=BD=CD,
∵AB是直徑,
∴∠ADB=90°,
∵∠ABD=30°,AB=6,
∴AD=
1
2
AB=
1
2
×=3,BD=
AB2-AD2
=
62-32
=3
3
,
∴四邊形ABCD的周長(zhǎng)為:3
3
+3
3
+3+6=9+6
3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖:PA、PB切⊙O于A、B,過(guò)點(diǎn)C的切線交PA、PB于D、E,PA=8cm,則△PDE的周長(zhǎng)為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AM、AN分別切⊙O于M、N兩點(diǎn),點(diǎn)B在⊙O上,且∠MBN=70°,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線MN經(jīng)過(guò)⊙O上的點(diǎn)A,點(diǎn)B在MN上,連OB交⊙O于C點(diǎn),且點(diǎn)C是OB的中點(diǎn),AC=
1
2
OB,若點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn),當(dāng)AB=2
3
時(shí),求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB切⊙O于點(diǎn)A、B,AC是⊙O的直徑,且∠BAC=35°,則∠P=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(教材變式題)如圖所示,在△ABC中,AB=6,AC=8,∠BAC=60°,以BC邊上一點(diǎn)作⊙O分別與AB,AC邊相切,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)B、C、D都在⊙O上,過(guò)點(diǎn)C作ACBD交OB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=6
3
cm.
(1)求證:AC是⊙O的切線;
(2)求⊙O的半徑長(zhǎng);
(3)求由弦CD、BD與弧BC所圍成的陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線MA交⊙O于A、B兩點(diǎn),BC是⊙O的直徑,點(diǎn)D在⊙O上,且BD平分∠MBC,過(guò)D作DE⊥MA,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DE+BE=12,⊙O的直徑是20,求AB和BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,CD平分∠ACB,CB⊥AB于B,O點(diǎn)在AC上,圓O過(guò)D點(diǎn),求證:AB與圓O相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案