【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的函數(shù)關(guān)系.當(dāng)轎車到達(dá)乙地后,馬上沿原路以CD段速度返回,則貨車從甲地出發(fā)_______小時后與轎車相遇(結(jié)果精確到0.01

【答案】4.68.

【解析】

觀察圖象可求得貨車的速度為60千米/時,轎車在CD段的速度為110千米/時,轎車到達(dá)乙地時與貨車相距30千米,設(shè)貨車從甲地出發(fā)后x小時后再與轎車相遇,根據(jù)題意可得方程110x-4.5+60x-4.5=30,解方程即可求得x的值,由此即可解答.

觀察圖象可得,

貨車的速度為300÷5=60(千米/時),

轎車在CD段的速度為(300-80)÷(4.5-2.5=110(千米/時),

轎車到達(dá)乙地時與貨車相距300-60×4.5=30(千米),

設(shè)貨車從甲地出發(fā)后x小時后再與轎車相遇,

110x-4.5+60x-4.5=30,

解得x=,

∴貨車從甲地出發(fā)后4.68小時后再與轎車相遇.

故答案為:4.68.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、F分別在矩形ABCD的兩條邊上,且EFEC,EF=EC,若該矩形的周長為16,AE=3,則DE的長為(  )

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解

1 2)(x+y2-16x-y2

3)-2x2y12xy18y 4a4-8a2b2+16b4 5x4-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為倍根方程,研究發(fā)現(xiàn)了此類方程的一般性結(jié)論:設(shè)其中一根為,則另一根為,因此,所有有,我們記,方程為倍根方程,下面我們根據(jù)此結(jié)論來解決問題:

1)方程①,方程②這兩個方程中,是被根方程的是_____________(填序號即可);

2)若是倍根方程,求的值;

3)若關(guān)于的一元二次方程是倍根方程,且在一次函數(shù)的圖象上,求此倍根方程的表達(dá)式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,DC5cm,在DC上存在一點E,沿直線AE把△AED折疊,使點D恰好落在BC邊上,設(shè)此點為F,若△ABF的面積為30cm2,那么折疊△AED的面積為( cm2

A. 16.9B. 14.4C. 13.5D. 11.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】選取二次三項式中的兩項,配成完全平方式的過程叫作配方.例如①選取二次項和一次項配方:;②選取二次項和常數(shù)項配方:;③選取一次項和常數(shù)項配方:

根據(jù)上述材料解決下面問題:

1)寫出的兩種不同形式的配方.

2)已知,求的值.

3)已知ab、c為三條線段,且滿足,試判斷a、b、c能否圍成三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊長均為整數(shù),的周長為奇數(shù).

1)若,,求AB的長.

2)若,求AB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅在計算時,拿出 1 張等邊三角形紙片按如圖所示方式進(jìn)行操作.

①如圖1,把 1 個等邊三角形等分成 4 個完全相同的等邊三角形,完成第 1 次操作;

②如圖 2,再把①中最上面的三角形等分成 4 個完全相同的等邊三角形,完成第 2 次操作;

③如圖 3,再把②中最上面的三角形等分成 4 個完全相同的等邊三角形,······依次重復(fù)上述操作.可得的值最接近的數(shù)是(

A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊答案