【題目】某文具用品商店銷售A、B兩種款式文具盒,已知購(gòu)進(jìn)1個(gè)A款文具盒比B款文具盒便宜5元,且用300元購(gòu)入A款文具盒的數(shù)量比購(gòu)入B款文具盒的數(shù)量多5個(gè).
(1)購(gòu)進(jìn)一個(gè)A款文具盒、一個(gè)B款文具盒各需多少元?
(2)若A款文具盒與B款文具盒的售價(jià)分別是20元和30元,現(xiàn)該文具用品商店計(jì)一劃用不超過(guò)1000元購(gòu)入共計(jì)60個(gè)A、B兩種款式的文具盒,且全部售完,問(wèn)如何安排進(jìn)貨才能使銷售利潤(rùn)最大?并求出最大利潤(rùn).
【答案】(1)購(gòu)進(jìn)一個(gè)A款文具盒、一個(gè)B款文具盒分別需要15元和20元;(2)最大利潤(rùn)為400元.
【解析】(1)設(shè)購(gòu)進(jìn)一個(gè)A款文具盒需x元,則一個(gè)B款文具盒需(x+5)元,根據(jù)用300元購(gòu)入A款文具盒的數(shù)量比購(gòu)入B款文具盒的數(shù)量多5列出方程,求出方程的解即可得到結(jié)果;
(2)設(shè)該商店購(gòu)進(jìn)A款文具盒a個(gè),則購(gòu)進(jìn)B款文具盒(60﹣a)個(gè),所獲的利潤(rùn)為W元,列出W關(guān)于x的關(guān)系式,且列出a的不等式,利用一次函數(shù)的性質(zhì)確定出獲得的最大利潤(rùn)即可.
(1)設(shè)購(gòu)進(jìn)一個(gè)A款文具盒需x元,則一個(gè)B款文具盒需(x+5)元,根據(jù)題意,得:
﹣=5,
解得:x1=15,x2=﹣20,
經(jīng)檢驗(yàn),x=15是原方程的根,也符合題意.
答:購(gòu)進(jìn)一個(gè)A款文具盒需15元,一個(gè)B款文具盒需20元.
(2)設(shè)該商店購(gòu)進(jìn)A款文具盒a個(gè),則購(gòu)進(jìn)B款文具盒(60﹣a)個(gè),所獲的利潤(rùn)為W元,根據(jù)題意,得:
W=(20﹣15)a+(30﹣20)(60﹣a)=﹣5a+600.
∵該文具用品商店計(jì)劃用不超過(guò)1000元購(gòu)入共計(jì)60個(gè)A、B兩種款式的文具盒,∴15a+20(60﹣a)≤1000,∴a≥40.
∵k=﹣5<0,∴W隨a的增大而減小,當(dāng)a=40時(shí),W有最大值,為﹣5×40+600=400,則獲得最大利潤(rùn)為400元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB、AC為腰分別向外作等腰直角三角形ABD和等腰直角三角形ACE,連接DE.若M為BC中點(diǎn),MA延長(zhǎng)線交DE于點(diǎn)H,
(1) 求證:AH⊥DE.
(2) 若DE=4,AH=3,求△ABM的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,連接OC.則下列說(shuō)法中正確的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周長(zhǎng)=AC的長(zhǎng)度
A.①②③B.②④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點(diǎn).
(1)求k和n的值;
(2)若點(diǎn)C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時(shí),函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,直線AB與軸交于點(diǎn)A(-2,0),與軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在雙曲線上,則的值( )
A. -4 B. -2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個(gè)陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請(qǐng)用等式表示出來(lái): .
(3)利用(2)中結(jié)論解決下面的問(wèn)題:如圖2,兩個(gè)正方形邊長(zhǎng)分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿在A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)△PAD的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,,.
求證:
證明:因?yàn)?/span>(已知)
所以(_______)
所以__________.(兩直線平行,內(nèi)錯(cuò)角相等)
因?yàn)?/span>.(已知)
所以__________.(_______)
所以.(_______)
所以.(等式性質(zhì)1)
即.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無(wú)關(guān),求y的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com