【題目】如圖,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CFBE交于O點(diǎn),則下列結(jié)論:CF=BE;COB=120°;OA平分∠FOE;OF=OA+OB.其中正確的有_____

【答案】①②③④.

【解析】

結(jié)合等邊三角形△ABF和△ACE的性質(zhì),利用SAS可證△ABE≌△AFC,由全等三角形的性質(zhì)可知正確;由三角形內(nèi)角和為180度易求∠BOC的度數(shù),可知正確;連接AO,過(guò)A分別作APCFPAMBEQ,由SABE=SAFC可知AP=AQ,利用HL定理可證,易知OA平分∠FOE,所以③正確;在OF上截取OD=OB,利用SAS可證△FBD≌△ABO,由全等三角形對(duì)應(yīng)邊相等易得OF= OA+OB,故正確.

解:∵△ABF和△ACE是等邊三角形,

AB=AFAC=AE,∠FAB=EAC=60°,

∴∠FAB+BAC=EAC+BAC,即∠FAC=BAE,

在△ABE與△AFC中,

,

∴△ABE≌△AFC(SAS),

BE=FC,∠AEB=ACF,故正確;

∵∠EAN+ANE+AEB=180°,∠CON+CNO+ACF=180°,∠ANE=CNO,∴∠CON=CAE=60°=MOB,

∴∠BOC=180°﹣∠CON=120°,故正確;

連接AO,過(guò)A分別作APCFP,AMBEQ,如圖1

∵△ABE≌△AFC,∴SABE=SAFC,∴CFAP=BEAQ,∵CF=BE,∴AP=AQ,

,∴OA平分∠FOE,所以正確;

如圖2,在OF上截取OD=OB,

∵∠BOF=60°,∴△OBD是等邊三角形,∴BD=BO,∠DBO=60°,∴∠FBD=ABO

BF=AB,∴△FBD≌△ABO(SAS),∴DF=OA,∴OF=DF+OD=OA+OB,故正確.

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE是兩個(gè)不全等的等腰直角三角形,其中點(diǎn)B與點(diǎn)D是直角頂點(diǎn),現(xiàn)固定△ABC,而將△ADE繞點(diǎn)A在平面內(nèi)旋轉(zhuǎn).

1)如圖1,當(dāng)點(diǎn)DCA延長(zhǎng)線上時(shí),點(diǎn)MEC的中點(diǎn),求證:△DMB是等腰三角形.

2)如圖2,當(dāng)點(diǎn)ECA延長(zhǎng)線上時(shí),MEC上一點(diǎn),若△DMB是等腰直角三角形,∠DMB為直角,求證:點(diǎn)MEC的中點(diǎn).

3)如圖3,當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)任意角度時(shí),線段EC上是否都存在點(diǎn)M,使△BMD為等腰直角三角形,若不存在,請(qǐng)舉出反例;若存在,請(qǐng)予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)nF運(yùn)算:①當(dāng)n為奇數(shù)時(shí),結(jié)果為3n+5;②當(dāng)n為偶數(shù)時(shí),結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運(yùn)算重復(fù)進(jìn)行.例如:取n26,則運(yùn)算過(guò)程如圖:

那么當(dāng)n9時(shí),第2019F運(yùn)算的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】機(jī)械表是日常生活中常見的一類鐘表,與電子表不同,機(jī)械表受環(huán)境、機(jī)芯等因素的影響常會(huì)產(chǎn)生走時(shí)誤差.現(xiàn)為了比較市場(chǎng)上甲、乙兩款機(jī)械表的精準(zhǔn)度,從兩款表中,各隨機(jī)抽取一塊進(jìn)行每日走時(shí)誤差的檢測(cè),連續(xù)檢測(cè)10天,兩款表每日走時(shí)誤差的統(tǒng)計(jì)數(shù)據(jù)如圖(單位:秒)

1)甲、乙兩種機(jī)械表的平均走時(shí)誤差分別是多少?

2)小明現(xiàn)計(jì)劃購(gòu)買一塊機(jī)械表,如果僅從走時(shí)的準(zhǔn)確度考慮,你會(huì)推薦他購(gòu)買甲、乙哪一種,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.

1)若花園的面積為192m2, x的值;

2)若在P處有一棵樹與墻CD,AD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,△ABC中,∠ACB=90°,CDABD,EBC中點(diǎn),CFAEF

1)求證:4CE2=BDAB;

2)若2DCF=ECF,求cosECF的值;

3)如圖2,DF延長(zhǎng)線交BCG,若AC=BC,EG=1,則DG=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn),點(diǎn)在反比例函數(shù)的圖象上,連接

1)求直線和反比例函數(shù)的解析式;

2)直線經(jīng)過(guò)點(diǎn)嗎?請(qǐng)說(shuō)明理由;

3)當(dāng)直線與反比例數(shù)圖象的交點(diǎn)在兩點(diǎn)之間.且將分成的兩個(gè)三角形面積之比為時(shí),請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線軸交于,兩點(diǎn),與軸交于點(diǎn)

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)P是位于直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),求BPC面積的最大值;

3)若點(diǎn)Dy軸上的一點(diǎn),且以B,C,D為頂點(diǎn)的三角形與相似,求點(diǎn)D的坐標(biāo);

4)若點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)F3,a)是該拋物線上的一點(diǎn),在軸、軸上分別找點(diǎn)M、N,使四邊形EFMN的周長(zhǎng)最小,求出點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角ABC中,延長(zhǎng)BC到點(diǎn)D,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,MN分別交∠ACB、∠ACD的平分線于EF兩點(diǎn),連接AEAF,在下列結(jié)論中:①OEOF;②CECF;③若CE12CF5,則OC的長(zhǎng)為6;④當(dāng)AOCO時(shí),四邊形AECF是矩形,其中正確的有( 。

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案