【題目】如圖所示,表示一次函數(shù)y=ax+b與正比例函數(shù)y=abx(a,b是常數(shù),且ab≠0)的圖象是(  )

A. B.

C. D.

【答案】A

【解析】

試題A.正比例函數(shù)y=abx過(guò)第二、四象限,所以a0,b0,而y=ax+b過(guò)第一、二、四象限,所以a0b0,故A正確;B.正比例函數(shù)y=abx過(guò)第一、三象限,所以a0,b0,而y=ax+b過(guò)第一、二、四象限,所以a0b0,所以矛盾,故B錯(cuò)誤;C.正比例函數(shù)y=abx過(guò)第二、四象限,所以a0b0,而y=ax+b過(guò)第一、二、三象限,所以a0,b0,所以矛盾,故C錯(cuò)誤;D.正比例函數(shù)y=abx過(guò)第一、三象限,所以a0,b0,而y=ax+b過(guò)第一、三、四象限,所以a0,<0,所以矛盾,故D錯(cuò)誤,故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.

(1)B出發(fā)時(shí)與A相距_____千米.

(2)走了一段路后,自行車發(fā)生故障進(jìn)行修理,所用的時(shí)間是____小時(shí).

(3)B出發(fā)后_____小時(shí)與A相遇.

(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.(寫(xiě)出計(jì)算過(guò)程)

(5)請(qǐng)通過(guò)計(jì)算說(shuō)明:若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),何時(shí)與A相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE,點(diǎn)EBC上.過(guò)點(diǎn)DDFBC,連接DB.

求證:(1)ABD≌△ACE;

(2)DF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程,是一元二次方程的是(
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC為等邊三角形,AQPQ,PRAB于點(diǎn)R,PSAC于點(diǎn)S,PRPS,有下列四個(gè)結(jié)論:①點(diǎn)P在∠BAC的平分線上;②ASAR;QPAB④△BRP≌△CSP.其中,正確的有__________(填序號(hào)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(cm)與燃燒時(shí)間x(h)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)甲、乙兩根蠟燭燃燒前的高度分別是__________,從點(diǎn)燃到燃盡所用的時(shí)間分別是________;

(2)分別求甲、乙兩根蠟燭燃燒時(shí)yx之間的函數(shù)關(guān)系式;

(3)燃燒多長(zhǎng)時(shí)間,甲、乙兩根蠟燭的高度相同?(不考慮都燃盡時(shí)的情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD,把BCD沿BD翻折,得BDG,BG,AD所在的直線交于點(diǎn)E,過(guò)點(diǎn)DDFBEBC所在直線于點(diǎn)F.

(1)如圖1,AB<AD,

①求證:四邊形BEDF是菱形;

②若AB=4,AD=8,求四邊形BEDF的面積;

(2)如圖2,若AB=8,AD=4,請(qǐng)按要求畫(huà)出圖形,并直接寫(xiě)出四邊形BEDF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案