如圖,⊙O的半徑是5,△ABC是⊙O的內(nèi)接三角形,過圓心O分別作AB、BC、AC的垂線,垂足為E、F、G,連接EF. 若OG=2,則EF         

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平行四邊形ABCD中,∠ABC=45°,E、F分別在CD和BC的延長線上,AE∥BD,∠EFC=30°, AB=2.求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,相交于點(diǎn),,  若,則等于_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


利用表格中的數(shù)據(jù),可求出+(4.123)2的近似值是(結(jié)果保留整數(shù)).

A.3

B.4

C.5

D.6

a

a2

17

289

4.123

13.038

18

324

4.243

13.416

19

361

4.359

13.784

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 (2×103)2×(3×10-3) =               .(結(jié)果用科學(xué)計(jì)數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


甲、乙、丙三位歌手進(jìn)入“我是歌手”的冠、亞、季軍的決賽,他們通過抽簽來決定演唱順序.

(1)求甲第一位出場的概率;

(2)求甲比乙先出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


     反比例函數(shù)y (k為常數(shù),k≠0)的圖象是雙曲線.當(dāng)k>0時(shí),雙曲線兩個(gè)分支分別在

一、三象限,在每一個(gè)象限內(nèi),yx的增大而減。ê喎Q增減性);反比例函數(shù)的圖象關(guān)于

   原點(diǎn)對(duì)稱(簡稱對(duì)稱性).   

   這些我們熟悉的性質(zhì),可以通過說理得到嗎?

  【嘗試說理】

我們首先對(duì)反比例函數(shù)yk>0)的增減性來進(jìn)行說理.

如圖,當(dāng)x>0時(shí).

在函數(shù)圖象上任意取兩點(diǎn)A、B,設(shè)A(x1,),B(x2,),

且0<x1 x2

下面只需要比較的大。

∵0<x1 x2,∴x1-x2<0,x1 x2>0,且 k>0.

<0.即

這說明:x1 x2時(shí),.也就是:自變量值增大了,對(duì)應(yīng)的函數(shù)值反而變小了.

即:當(dāng)x>0時(shí),yx的增大而減。

同理,當(dāng)x<0時(shí),yx的增大而減小.

(1)試說明:反比例函數(shù)y (k>0)的圖象關(guān)于原點(diǎn)對(duì)稱.

   【運(yùn)用推廣】

(2)分別寫出二次函數(shù)yax2 (a>0,a為常數(shù))的對(duì)稱性和增減性,并進(jìn)行說理.

對(duì)稱性:                                            ;

增減性:                                             

說理:

(3)對(duì)于二次函數(shù)yax2bxc (a>0,a,bc為常數(shù)),請(qǐng)你從增減性的角度,簡要解釋為何當(dāng)x=— 時(shí)函數(shù)取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程 2x2-4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個(gè)不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有2個(gè),黑球有1個(gè),綠球有3個(gè),第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,則兩次摸到的都是紅球的概率為

A.     B.      C.        D.

查看答案和解析>>

同步練習(xí)冊(cè)答案