【題目】如圖1,拋物線軸交于、兩點(在點的左側(cè)),與軸交于點,且

(1)求該拋物線的函數(shù)表達式;

(2)動點在線段下方的拋物線上.

①連接、,過點軸的垂線,垂足為,交于點.過點,垂足為.設(shè)點的橫坐標為,線段的長為,用含的代數(shù)式表示

②過點,垂足為,連接.是否存在點,使得中的一個角恰好等于2?如果存在,求出點的橫坐標;如果不存在,請說明理由.

【答案】1;(2)①;②存在,1

【解析】

1)根據(jù)題意可求點A-1,0),點Bm,0),根據(jù)OB=3OA,可求m的值,即可求解析式;

2)①先求出直線BC解析式,即可得F點坐標,利用可得用含t的代數(shù)式表示d;

②分∠CDH=2ABC或∠DCH=2ABC兩種情況討論,利用銳角三角函數(shù),相似三角形的性質(zhì)可求點D的橫坐標.

解:(1)令y=0,則

,

∴(x-m)(x+1=0

m0,點A在點B的左側(cè)

∴點A-10),點Bm,0

OA=1,OB=m ,

OB=3OA ,∴m=3

∴拋物線

2)①如圖1:連接AF

∵拋物線y軸交與點C

∴點C0,-2

∵點A-1,0),點B3,0),點C0,-2

AB=4,OC=2,AC=

∵設(shè)直線BC解析式y=kx+b

解得

∴直線BC解析式

D點橫坐標為t,DFAB

∴點F的橫坐標為t

,

②若∠DCH=2ABC,如圖2

過點CCFAB,交拋物線于F點,作DECF于點E

ABCF ∴∠ABC=BCF

又∵∠DCH=2BCF

∴∠DCF=ABC=BCF

∵點D坐標為,

CE=t,DE=

tanDCF=tanABC=

(不合題意舍去),

即點D的橫坐標為1

若∠CDH=2ABC,如圖3

作∠ECB=ABC,過點BBPHD,交CD的延長線于點P,作PFABF

∵∠ECB=ABC EC=BE,∠AEC=2ABC ,

RtOEC中,

CE=,

OE=OB-BE=

tanAEC=tan2ABC=

∵點B30),點C0,-2

BC=

BPHDHDBC BPBC,∠CDH=CPB=2ABC

tanCPB=tan2ABC==

BP=

∵∠ABC+PBF=90°,∠ABC+OCB=90° ,

∴∠OCB=PBF,且∠BOC=PFB=90°

∴△BOC∽△PFB

PF=BF=

∴點P坐標

∵點C0,-2),點P

∴直線PC解析式

∵直線CP與拋物線交于C,D兩點

解得:

∴點D的橫坐標為

綜上所述:點D的橫坐標為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明想測量電線桿AB的高度,但在太陽光下,電線桿的影子恰好落在地面和土地的坡面上,量得坡面上的影長CD4m,地面上的影長BC10m,土坡坡面與地面成30°的角,此時測得1m長的木桿的影長為2m,求電線桿的高度.(結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,DAB中點,AECD,CEAB.

(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.

(2)連接BE,若∠BAC=30°,CE=1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)過市場調(diào)查,發(fā)現(xiàn)某種運動服的銷量與售價是一次函數(shù)關(guān)系,具體信息如下表:

售價(元/件)

200

210

220

230

月銷量(件)

200

180

160

140

已知該運動服的進價為每件150元.

1)售價為元,月銷量為件;

①求關(guān)于的函數(shù)關(guān)系式;

②若銷售該運動服的月利潤為元,求關(guān)于的函數(shù)關(guān)系式,并求月利潤最大時的售價;

2)由于運動服進價降低了元,商家決定回饋顧客,打折銷售,這時月銷量與調(diào)整后的售價仍滿足(1)中函數(shù)關(guān)系式.結(jié)果發(fā)現(xiàn),此時月利潤最大時的售價比調(diào)整前月利潤最大時的售價低15元,則的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據(jù)以上信息解決下列問題:

(1) ,

(2)扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為 ;

(3)從選航模項目的名學(xué)生中隨機選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,點C在⊙O上,點PAB延長線上一點,連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCA,OA2,求CP的長;

(2)如圖2,若點M是弧AB的中點,CMAB于點N,MNMC9,求BM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店準備購進AB兩種品牌的文具袋進行銷售,若購進A品牌文具袋和B品牌文具袋各5個共花費120元,購進A品牌文具袋3個和B品牌文具袋4個共花費88元.

1)求購進A品牌文具袋和B品牌文具袋的單價;

2)若該文具店購進了A,B兩種品牌的文具袋共100個,其中A品牌文具袋售價為12元,B品牌文具袋售價為23元,設(shè)購進A品牌文具袋x個,獲得總利潤為w元.

①求w關(guān)于x的函數(shù)關(guān)系式;

②要使銷售文具袋的利潤最大,且所獲利潤不低于進貨價格的45%,請你幫該文具店設(shè)計一個進貨方案,并求出其所獲利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A1的坐標為(1,2),以點O為圓心,以OA1長為半徑畫弧,交直線于點B1.過B1點作B1A2y軸,交直線y2x于點A2,以O為圓心,以OA2長為半徑畫弧,交直線于點B2;過點B2B2A3y軸,交直線y2x于點A3,以點O為圓心,以OA3長為半徑畫弧,交直線于點B3;過B3點作B3A4y軸,交直線y2x于點A4,以點O為圓心,以OA4長為半徑畫弧,交直線于點B4,…按照如此規(guī)律進行下去,點B2020的坐標為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點為C14),交x軸于AB兩點,交y軸于點D,其中點B的坐標為(3,0).

1)求拋物線的解析式;

2)如圖2,點EBD上方拋物線上的一點,連接AEDB于點F,若AF=2EF,求出點E的坐標.

3)如圖3,點M的坐標為(0),點P是對稱軸左側(cè)拋物線上的一點,連接MP,將MP沿MD折疊,若點P恰好落在拋物線的對稱軸CE上,請求出點P的橫坐標.

查看答案和解析>>

同步練習(xí)冊答案