【題目】平面直角坐標系 xOy 中,定義:已知圖形 W 和直線 l.如果圖形 W 上存在一點 Q,使得點 Q 到直線 l 的距離小于或等于 k,則稱圖形 W 與直線 lk 關(guān)聯(lián),設圖形 W:線段 AB,其中點 At,0)、點 Bt+2, 0).

1)線段AB的長是

2)當t1 時,

①已知直線y=﹣x1,點A到該直線的距離為 ;

②已知直線y=﹣x+b,若線段AB與該直線關(guān)聯(lián),求b的取值范圍。

【答案】12;(2)①;②-1≤b≤5.

【解析】

1)利用兩點間距離公式計算即可;

2)①如圖,設直線y=-x-1y軸于E,交x軸于F.只要證明AEEF,求出EF即可;

②如圖,作BQ⊥直線y=-x+b,垂足為Q,當BQ=時,BR=2,推出R50),把R5,0)代入y=-x+b中,得到b=5,由此即可解決問題.

1)∵At,0),Bt+2,0),

AB=t+2-t=2

2)①如圖,設直線y=-x-1y軸于E,交x軸于F

E0,-1),F-10),

A1,0),

OE=OF=OA=1,

∴∠AEF=90°

AEEF,

AE=,

∴點A到該直線的距離為;

②如圖,作BQ⊥直線y=-x+b,垂足為Q,

BQ=時,BR=2,

R5,0),

R5,0)代入y=-x+b中,得到b=5

∴若線段AB與該直線關(guān)聯(lián),則b的取值范圍-1≤b≤5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場在春節(jié)期間搞優(yōu)惠促銷活動,商場將29英寸和25英寸彩電共96臺分別以8折和7折出售,共得168400元。已知29英寸彩電原價為3000/臺,25英寸彩電原價為2000/臺,出售29英寸和25英寸彩電各多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知識鏈接:

“轉(zhuǎn)化、化歸思想”是數(shù)學學習中常用的一種探究新知、解決問題的基本的數(shù)學思想方法,通過“轉(zhuǎn)化、化歸”通?梢詫崿F(xiàn)化未知為已知,化復雜為簡單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長ABE,過點BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結(jié)反思:本題通過添加適當?shù)妮o助線,把三角形的三個角之和轉(zhuǎn)化成了一個平角,利用平角的定義,說明了數(shù)學上的一個重要結(jié)論“三角形的三個內(nèi)角和等于180°.

2)類比探究:請同學們參考圖②,模仿(1)的解決過程試說明“三角形的三個內(nèi)角和等于180°”

3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內(nèi)角之和∠A+B+C+D+E= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 A,B,C,D 依次在同一條直線上,點 E,F 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=D,AE=DF

(1)求證:四邊形 BFCE 是平行四邊形.

(2)若 AD=10,EC=3,∠EBD=60°,當四邊形 BFCE是菱形時,求 AB 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:1)如圖1,ABC中,DEBC分別交ABACD,E兩點,過點EEFABBC于點F。請按圖示數(shù)據(jù)填空:四邊形DBFE的面積______,EFC的面積______,ADE的面積______。

探究發(fā)現(xiàn):(2)在(1)中,若 ,DEBC間的距離為。請證明

拓展遷移:3)如圖2,DEFG的四個頂點在ABC的三邊上,若ADG、DBE、GFC的面積分別為2、5、3,試利用(2)中的結(jié)論求ABC的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,DBC的中點,DE⊥BC,CE∥AD,若AC=2,CE=4,求四邊形ACEB的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/分

頻數(shù)

頻率

50≤x<60

10

0.05

 60≤x<70

30

0.15

 70≤x<80

40

n

 80≤x<90

m

0.35

 90≤x≤100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m=   ,n=   ;

(2)請補全頻數(shù)分布直方圖;

(3)這次比賽成績的中位數(shù)會落在   分數(shù)段;

(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線MN表示一條鐵路,A,B是兩個城市,它們到鐵路的垂直距離分別為AA1=20km,BB1=40km,已知A1B1=80km,現(xiàn)要在A1,B1之間設一個中轉(zhuǎn)站P,使兩個城市到中轉(zhuǎn)站的距離之和最短,請你設計一種方案確定P點的位置,并求這個最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是__

查看答案和解析>>

同步練習冊答案