【題目】某學(xué)校興趣小組,對(duì)函數(shù)y|x1|+1的圖像和性質(zhì)進(jìn)行了研究,探究過程如下:

1)自變量的取值范圍是全體實(shí)數(shù),的幾組對(duì)應(yīng)值如表:

X

……

0

1

2

3

4

5

……

y

……

5

4

m

2

1

2

3

4

5

……

其中

2)在平面直角坐標(biāo)系中,畫出上表中對(duì)應(yīng)值為點(diǎn)的坐標(biāo),根據(jù)畫出的點(diǎn),畫出該函數(shù)的圖象;

3)根據(jù)畫出的函數(shù)圖像特征,仿照示例,完成下表中函數(shù)的變化規(guī)律:

序號(hào)

函數(shù)圖像特征

函數(shù)變化規(guī)律

示例1

在直線的右側(cè),函數(shù)圖像自左至右呈上升趨勢(shì)

當(dāng)時(shí)yx的增大而增大

在直線的右側(cè),函數(shù)圖像自左至右呈下降趨勢(shì)

示例2

函數(shù)圖像經(jīng)過點(diǎn)(-3,5

當(dāng)時(shí)

函數(shù)圖像的最低點(diǎn)是

當(dāng)時(shí),函數(shù)有最(大或。┲,此時(shí)

4)當(dāng)時(shí),的取值范圍是_____________

【答案】13;(2)見解析;(3當(dāng)1時(shí),的增大而減小,②1,小,1;(4

【解析】

1)把x=-1代入即可求解;

2)先描點(diǎn),再畫出圖像即可;

3)根據(jù)函數(shù)圖像特征即可填表;

4)根據(jù)函數(shù)圖像即可求出x的取值.

:1)當(dāng)x=-1時(shí),y=|-11|+1=3

m=3

故答案為:3

2)該函數(shù)的圖象如圖所示

3)由圖可得當(dāng)1時(shí),的增大而減小

當(dāng)1時(shí),函數(shù)有最小值,此時(shí)1

故答案為: ①當(dāng)1時(shí),的增大而減小,②1,小,1;

4)∵

由圖可得的取值范圍是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-4,0)、(0,2),⊙C的圓心坐標(biāo)為(0,-2),半徑為2.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與 軸交于點(diǎn)E,則△ABE面積的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點(diǎn)B處看見一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,D是線段BC的延長線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

(1)如圖1,點(diǎn)D在線段BC的延長線上移動(dòng),若∠BAC=30°,則∠DCE=   

(2)設(shè)∠BAC=α,∠DCE=β:

如圖1,當(dāng)點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),αβ之間有什么數(shù)量關(guān)系?請(qǐng)說明理由;

當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),αβ之間有什么數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:菱形OBCD在平面直角坐標(biāo)系中位置如圖所示,點(diǎn)B的坐標(biāo)為(2,0),∠DOB=60°.

(1)點(diǎn)D的坐標(biāo)為 , 點(diǎn)C的坐標(biāo)為;
(2)若點(diǎn)P是對(duì)角線OC上一動(dòng)點(diǎn),點(diǎn)E(0,﹣ ),求PE+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚棋子放在⊙O上的點(diǎn)A處,通過摸球來確定該棋子的走法.
其規(guī)則如下:在一只不透明的口袋中,裝有3個(gè)標(biāo)號(hào)分別為1,2,3的相同小球.充分?jǐn)噭蚝髲闹须S機(jī)摸出1個(gè),記下標(biāo)號(hào)后放回袋中并攪勻,再從中隨機(jī)摸出1個(gè),若摸出的兩個(gè)小球標(biāo)號(hào)之積是m,就沿著圓周按逆時(shí)針方向走m步(例如:m=1,則A﹣B;若m=6,則A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或樹狀圖,分別求出棋子走到A、B、C、D點(diǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點(diǎn)E在邊CD上,在矩形ABCD的左側(cè)作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結(jié)AF交BD于點(diǎn)H.

(1)求證:BD∥CF;
(2)求證:H是AF的中點(diǎn);
(3)連結(jié)CH,若HC⊥BD,求a:b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開的四個(gè)區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個(gè)區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中,每個(gè)小方格都是邊長為1個(gè)單位的正方形,圖①、圖②、圖③均為頂點(diǎn)都在格點(diǎn)上的三角形(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)),

(1)在圖1中,圖①經(jīng)過一次變換(填“平移”或“旋轉(zhuǎn)”或“軸對(duì)稱”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過一次旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點(diǎn)(填“A”或 “B”或“C”);
(3)在圖2中畫出圖①繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后的圖④.

查看答案和解析>>

同步練習(xí)冊(cè)答案