【題目】甲、乙、丙、丁兩位同學做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人,則第二次傳球后球回到甲手里的概率是________;第三次傳球后球回到甲手里的概率是________

【答案】

【解析】

畫出樹狀圖,可得總結果數(shù)與第二次傳到甲手里的情況數(shù),根據(jù)概率公式可得答案;根據(jù)傳一次的結果數(shù)是3,傳二次的結果數(shù)是32,可知傳三次的結果數(shù)是33,結合所畫樹狀圖分析得出第三次傳給甲的結果數(shù)是331),根據(jù)概率公式可得答案.

解:畫樹狀圖:

由樹狀圖可知,共有9種等可能的結果,其中第二次傳球后球回到甲手里的結果有3種,

∴第2次傳球后球回到甲手里的概率P;

由傳一次的結果數(shù)是3,傳二次的結果數(shù)是32,可知傳三次的結果數(shù)是33,而第三次傳給甲的結果數(shù)是331),

∴第三次傳球后球回到甲手里的概率P,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點,是雙曲線圖象上的兩點,連接,線段經(jīng)過點,點為雙曲線在第二象限的分支上一點,當滿足時,的值為( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)的圖象與一次函數(shù)的圖象交點為,

1)求反比例函數(shù)與一次函數(shù)的解析式及點坐標;

2)若軸上的點,且滿足的面積為10,求點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)

(1)求這兩個函數(shù)解析式;

(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年春節(jié)期間,昆明市政府為了進一步做好新冠肺炎疫情的防控工作,在各個高速公路出入口均設立檢測點,對出入人員進行登記和體溫檢測,下圖為一高速路口檢測點的指示牌,已知立桿的高度是,從側面點處測得指示牌點和點的仰角分別是,求的長.(結果精確到.參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°,,點DE分別在邊AB上,且AD = 2,∠DCE = 45°,那么DE =___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD // BCAB = CD,AD = 5,BC = 15,E為射線CD上任意一點,過點AAF // BE,與射線CD相交于點F.聯(lián)結BF,與直線AD相交于點G.設CE = x,

1)求AB的長;

2)當點G在線段AD上時,求y關于x的函數(shù)解析式,并寫出函數(shù)的定義域;

3)如果,求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校運動會的立定跳遠和1分鐘跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為參加這兩項比賽的10名學生的預賽成績:

學生編號

成績

項目

3104

3508

3115

3406

3317

3413

3218

3307

3519

3210

立定跳遠(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

1分鐘跳繩(單位:次)

163

175

160

163

172

170

165

在這10名學生中,同時進入兩項決賽的只有6人,進入立定跳遠決賽的有8人,如果知道在同時進入兩項決賽的6人中有“3508號”學生,沒有“3307號”學生,那么的值是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人在相同條件下完成了10次射擊訓練,兩人的成績?nèi)鐖D所示。

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

方差/環(huán)

______

7

1.2

7

______

______

1)完成表格;

2)根據(jù)訓練成績,你認為選派哪一名隊員參賽更好?為什么?

查看答案和解析>>

同步練習冊答案