【題目】已知如圖,線段AB=60AD=13,DE=17,EF=7,請問在D,EF,三點中,哪一點最接近線段AB的黃金分割點( )

A.DB.EC.FD.D 點或 F

【答案】C

【解析】

根據(jù)題意先計算出BD=60-13=47,AE=BE=30,AF=37,則E點為AB的中點,則計算BDABAFAB,然后把計算的結果與0.618比較,則可判斷哪一點最接近線段AB的黃金分割點.

解:∵線段AB=60,AD=13,DE=17,EF=7,

BD=60-13=47AE=BE=30,AF=37,

BDAB=47600.783AFAB=3760=0.617,

∴點F最接近線段AB的黃金分割點.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)觀察發(fā)現(xiàn):如圖1,在中,,點在邊上,過,.填空:

是否相似(直接回答)________;

________;________

2)拓展探究:將繞頂點旋轉(zhuǎn)到圖2所示的位置,猜想是否相似?若不相似,說明理由;若相似,請證明;

3)遷移應用:將繞頂點旋轉(zhuǎn)到點、在同一條直線上時,直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質(zhì)時,我們對函數(shù)解析式進行了深入分析.

首先,確定自變量的取值范圍是全體非零實數(shù),因此函數(shù)圖象會被軸分成兩部分;其次,分析解析式,得到的變化趨勢:當時,隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會越來越大,由此,可以大致畫出時的部分圖象,如圖所示:

利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).通過分析解析式畫出部分函數(shù)圖象如圖所示.

1)請沿此思路在圖中完善函數(shù)圖象的草圖并標出此函數(shù)圖象上橫坐標為0的點;(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)

2)觀察圖象,寫出該函數(shù)的一條性質(zhì):__________

3)若關于的方程有兩個不相等的實數(shù)根,結合圖象,直接寫出實數(shù)的取值范圍: __________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小紅作出了邊長為1的第1個正三角形,算出了正的面積,然后分別取三邊的中點,作出了第二個正三角形,算出第2個正的面積,用同樣的方法作出了第3個正,算出第3個正的而積,依此方法作下去,由此可得第個作出的正的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國古代數(shù)學專著,在數(shù)學上有其獨到的成就,不僅最早提到了分數(shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數(shù)、雞的價格各是多少?請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=2,OB=1,將RtAOB繞點O順時針旋轉(zhuǎn)90°后得到RtFOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yax+b的圖象與x軸,y軸交于A,B兩點,與反比例函數(shù)y的圖象相交于CD兩點,分別過C、D兩點作y軸和x軸的垂線,垂足分別為E、F,連接CFDE.下列四個結論:CEF與△DEF的面積相等;AOB∽△FOE;ACBD;④tanBAOa;其中正確的結論是_____.(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某隧道洞的內(nèi)部截面頂部是拋物線形,現(xiàn)測得地面寬 AB=10m,隧道頂點O到地面AB的距離為5m,

(1)建立適當?shù)钠矫嬷苯亲鴺讼,幵求該拋物線的解析式;

(2)一輛小轎車長 4.5米,寬2米,高1.5米,同樣大小的小轎車通過該隧道,最多能有 幾輛車幵行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售一種文具袋,成本為30/件,每天的銷售量(件)與銷售單價(元)之間滿足一次函數(shù)關系,其圖象如圖所示.

1)求之間的函數(shù)關系式;

2)如果規(guī)定每天的銷量不低于240件,那么當銷售單價為多少元時,每天獲取的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案