【題目】如圖,⊙O是△ABC的外接圓,AC是直徑,點(diǎn)E是AB的中點(diǎn),延長EO交⊙O于D點(diǎn),若BC=DC,AB=2 ,求 的長度.
【答案】解:連結(jié)BD,如圖, ∵BC=DC,
∴ = ,
∴AC垂直平分BD,
∴AB=AD,
∵點(diǎn)E是AB的中點(diǎn),即AE=BE= ,
∴DE⊥AB,
∴DA=DB,
∴AB=AD=DB,
∴△ABD為等邊三角形,
∴∠BAC=30°,∠ABD=60°,
∴∠AOD=2∠ABD=120°,
在Rt△AEO中,∵∠EAO=30°,
∴OE= AE=1,AO=2OE=2,
∴ 的長度= = .
【解析】連結(jié)BD,如圖,利用圓心角、弧、弦的關(guān)系,由BC=DC得 = ,則根據(jù)垂徑定理得到AC垂直平分BD,所以AB=AD,同樣可得DA=DB,則可判斷△ABD為等邊三角形,所以∠BAC=30°,∠ABD=60°,根據(jù)圓周角定理得∠AOD=2∠ABD=120°,然后在Rt△AEO中計算出AO,最后利用弧長公式計算即可.
【考點(diǎn)精析】通過靈活運(yùn)用三角形的外接圓與外心和弧長計算公式,掌握過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月完工的上海中心大廈是一座超高層地標(biāo)式摩天大樓,其高度僅次于世界排名第一的阿聯(lián)酋迪拜大廈,某人從距離地面高度263米的東方明珠球體觀光層測得上海中心大廈頂部的仰角是22.3°.已知東方明珠與上海中心大廈的水平距離約為900米,那么上海中心大廈的高度約為米(精確到1米).(參考數(shù)據(jù):sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)業(yè)現(xiàn)代化是我國“十三五”的重要規(guī)劃之一,某地農(nóng)民積極響應(yīng)政府號召,自發(fā)成立現(xiàn)代新型農(nóng)業(yè)合作社,適度擴(kuò)大玉米種業(yè)規(guī)模,今年,合作社600畝玉米喜獲豐收.合作社打算雇傭玉米收割機(jī)收割玉米,現(xiàn)有A,B兩種型號收割機(jī)可供選擇,且每臺B種型號收割機(jī)每天的收個畝數(shù)是A種型號的1.5倍,如果單獨(dú)使用一臺收割機(jī)將600畝玉米全部收割完,A種型號收割機(jī)比B種型號收割機(jī)多用10天.
(1)求A,B兩種型號收割機(jī)每臺每天收個玉米的畝數(shù);
(2)已知A種型號收割機(jī)收費(fèi)是45元/畝,B種型號收割機(jī)收費(fèi)是50元/畝,經(jīng)過研究,合作社計劃同時雇傭A,B兩種型號收割機(jī)各一臺合作完成600畝玉米的收割任務(wù),則合作社需要支付的玉米收割總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B是切點(diǎn),點(diǎn)C是劣弧AB上的一個動點(diǎn),若∠ACB=110°,則∠P的度數(shù)是( )
A.55°
B.30°
C.35°
D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,AB=AC.過A點(diǎn)的直線a從與邊AC重合的位置開始繞點(diǎn)A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點(diǎn)P(點(diǎn)P不與點(diǎn)B、點(diǎn)C重合),△BMN的邊MN始終在直線a上(點(diǎn)M在點(diǎn)N的上方),且BM=BN,連接CN.
(1)當(dāng)∠BAC=∠MBN=90°時, ①如圖a,當(dāng)θ=45°時,∠ANC的度數(shù)為;
(2)②如圖b,當(dāng)θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(3)如圖c,當(dāng)∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2+mx的對稱軸是x=3,則關(guān)于x的方程x2+mx=7的解為( 。
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】秋季新學(xué)期開學(xué)時,紅城中學(xué)對七年級新生掌握“中學(xué)生日常行為規(guī)范”的情況進(jìn)行了知識測試,測試成績?nèi)亢细,現(xiàn)學(xué)校隨機(jī)選取了部分學(xué)生的成績,整理并制作成了如下不完整的圖表:
分 數(shù) 段 | 頻數(shù) | 頻率 |
60≤x<70 | 9 | a |
70≤x<80 | 36 | 0.4 |
80≤x<90 | 27 | b |
90≤x≤100 | c | 0.2 |
請根據(jù)上述統(tǒng)計圖表,解答下列問題:
(1)在表中,a= , b= , c=;
(2)補(bǔ)全頻數(shù)直方圖;
(3)根據(jù)以上選取的數(shù)據(jù),計算七年級學(xué)生的平均成績.
(4)如果測試成績不低于80分者為“優(yōu)秀”等次,請你估計全校七年級的800名學(xué)生中,“優(yōu)秀”等次的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,△DCE,△FEG是三個全等的等腰三角形,底邊BC,CE,EG在同一直線上,且AB= ,BC=1,連結(jié)BF,分別交AC,DC,DE于點(diǎn)P,Q,R.
(1)求證:△BFG∽△FEG,并求出BF的長;
(2)求AP:PC的值;
(3)觀察圖形,請你提出一個與點(diǎn)P相關(guān)的問題,并進(jìn)行解答.(根據(jù)提出問題的層次和解答過程平分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將九年級部分男生擲實(shí)心球的成績進(jìn)行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.
(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com