已知:二次函數(shù)的表達(dá)式為y=-
1
2
x2+x+
3
2

(1)寫(xiě)出這個(gè)函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);并畫(huà)出圖象.
(2)求圖象與x軸的交點(diǎn)坐標(biāo);
(3)觀察圖象,指出使函數(shù)值y>
3
2
時(shí)自變量x的取值范圍.
分析:(1)將二次函數(shù)寫(xiě)成頂點(diǎn)式y(tǒng)=-
1
2
x2+x+
3
2
=-
1
2
(x-1)2+2
(2)圖象與x軸的交點(diǎn)的橫坐標(biāo)為此函數(shù)值為0時(shí)的一元二次方程的解;
將二次函數(shù)寫(xiě)成式y(tǒng)=-
1
2
x2+x+
3
2
=-=-
1
2
(x+1)(x-3),根據(jù)頂點(diǎn)式可確定對(duì)稱軸及頂點(diǎn)坐標(biāo),根據(jù)一般式可確定拋物線與y軸的交點(diǎn),根據(jù)交點(diǎn)式可確定拋物線與x軸的交點(diǎn);
(3)根據(jù)圖象可確定y>
3
2
時(shí),x的取值范圍.
解答:解:(1)∵y=-
1
2
x2+x+
3
2
=-
1
2
(x2-2x)+
3
2
=-
1
2
(x-1)2+2,
∴拋物線的頂點(diǎn)坐標(biāo)為(1,2),對(duì)稱軸為直線x=1,
圖象如下:


(2)當(dāng)y=0時(shí),解方程-
1
2
x2+x+
3
2
=0,
解得x=3或-1,
所以圖象與x軸交點(diǎn)為(-1,0),(3,0);

(3)∵拋物線與y軸的交點(diǎn)為(0,
3
2
),即x=0時(shí),y=
3
2
;
又∵拋物線的對(duì)稱軸為直線x=1,
∴x=2時(shí),y=
3
2
;
由圖象可知,函數(shù)值y>
3
2
時(shí),x的取值范圍是0<x<2.
點(diǎn)評(píng):本題考查了拋物線的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)與拋物線解析式的關(guān)系,拋物線的頂點(diǎn)式:y=a(x-h)2+k,頂點(diǎn)坐標(biāo)為(h,k),對(duì)稱軸x=h.同時(shí)考查了用拋物線與x軸的交點(diǎn)坐標(biāo),判斷函數(shù)值在某一范圍時(shí)自變量的取值范圍的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無(wú)論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少
1
a
,縱坐標(biāo)增大
1
a
分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加
1
a
,縱坐標(biāo)增加
1
a
分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說(shuō)明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來(lái),并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省自貢市2011年初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷 題型:044

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無(wú)論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.

(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;

(2)請(qǐng)找出在直線上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說(shuō)明理由;

(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+x(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來(lái),并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無(wú)論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少數(shù)學(xué)公式,縱坐標(biāo)增大數(shù)學(xué)公式分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加數(shù)學(xué)公式,縱坐標(biāo)增加數(shù)學(xué)公式分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說(shuō)明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來(lái),并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省中考真題 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無(wú)論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說(shuō)明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來(lái),并給予證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年四川省自貢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個(gè)特點(diǎn):①無(wú)論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請(qǐng)找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說(shuō)明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對(duì)一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個(gè)猜想嗎?請(qǐng)用數(shù)學(xué)語(yǔ)言把你的猜想表達(dá)出來(lái),并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案