如圖所示,平行四邊形ABCD的對(duì)角線BD的垂直平分線與邊AB、CD分別交于F、E,證明四邊形DEBF是菱形.

【答案】分析:根據(jù)四邊形ABCD是平行四邊形,EF垂直平分DB,可得FO=EO,又因?yàn)镈O=BO,可求證四邊形DEBF是平行四邊形,因?yàn)镋F⊥DB,故可根據(jù)對(duì)角線互相垂直的平行四邊形是菱形來(lái)證明.
解答:證明:∵EF垂直平分DB
∴O是□ABCD的對(duì)稱中心
∴△DOF和△BOE關(guān)于點(diǎn)O對(duì)稱
∴FO=EO
又∵DO=BO
∴四邊形DEBF是平行四邊形
又∵EF⊥DB,
∴四邊形DEBF是菱形.(對(duì)角線互相垂直的平行四邊形是菱形)
點(diǎn)評(píng):本題考查平行四邊形的性質(zhì)和菱形的判定.菱形的判別方法是說(shuō)明一個(gè)四邊形為菱形的理論依據(jù),常用三種方法:
①定義;
②四邊相等;
③對(duì)角線互相垂直平分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖所示,平行四邊形ABCD,AD=5,AB=9,點(diǎn)A的坐標(biāo)為(-3,0),則點(diǎn)C的坐標(biāo)為
(9,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖所示,平行四邊形ABCD中,E、F分別在AD、BD上,AE=CF,AF與BE交于點(diǎn)G,CE與DF交于點(diǎn)H,猜想EF與GH間的關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

體育課上,老師用繩子圍成一個(gè)周長(zhǎng)為36米的游戲場(chǎng)地,圍成的場(chǎng)地是如圖所示的平行四邊形ABCD,∠ABC=45°.設(shè)邊AB的長(zhǎng)為x(單位:米),面積為y(單位:米2).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求出當(dāng)x為何值時(shí),平行四邊形ABCD的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下面的數(shù)陣是由一些奇數(shù)排列而成的.
(1)若用類似如圖所示的平行四邊形框出的四個(gè)數(shù)的和是400,求這四個(gè)數(shù);
(2)是否存在這樣的四個(gè)數(shù),使它們的和為2012?若存在,求出這四個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)用如圖所示的平行四邊形在日歷中圈出了個(gè)數(shù),若和為22,則這四個(gè)數(shù)為
2,3,8,9
2,3,8,9
;
(2)若圈出四個(gè)數(shù)中最小的數(shù)為m,則最大的數(shù)為
m+7
m+7
四個(gè)數(shù)的和為
4m+14
4m+14
;
(3)若圈出四個(gè)數(shù)的和是最小的數(shù)的5倍,求所圈的四個(gè)數(shù)中的最小數(shù)
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案