【題目】如圖,經(jīng)過點A(0,﹣4)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0),C兩點,O為坐標原點.
(1)求拋物線的解析式;
(2)將拋物線y= x2+bx+c向上平移 個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.
【答案】
(1)
解:將A(0,﹣4)、B(﹣2,0)代入拋物線y= x2+bx+c中,得:
,
解得:
故拋物線的解析式:y= x2﹣x﹣4
(2)
解:由題意,新拋物線的解析式可表示為:y= (x+m)2﹣(x+m)﹣4+ ,即:y= x2+(m﹣1)x+ m2﹣m﹣ ;
它的頂點坐標P:(1﹣m,﹣1);
由(1)的拋物線解析式可得:C(4,0);
設直線AC的解析式為y=kx+b(k≠0),把x=4,y=0代入,
∴4k+b=0,b=﹣4,
∴y=x﹣4.
同理直線AB:y=﹣2x﹣4;
當點P在直線AB上時,﹣2(1﹣m)﹣4=﹣1,解得:m= ;
當點P在直線AC上時,(1﹣m)﹣4=﹣1,解得:m=﹣2;
∴當點P在△ABC內(nèi)時,﹣2<m< ;
又∵m>0,
∴符合條件的m的取值范圍:0<m<
(3)
解:由A(0,﹣4)、C(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;
如圖,在OA上取ON=OB=2,則∠ONB=∠ACB=45°;
∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠OMB=∠NBA;
如圖,在△ABN、△AM1B中,
∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=ANAM1;
易得:AB2=(﹣2)2+42=20,AN=OA﹣ON=4﹣2=2;
∴AM1=20÷2=10;
而∠BM1A=∠BM2A=∠ABN,
∴OM1=OM2=6,AM2=OM2﹣OA=6﹣4=2.
綜上,AM的長為10或2.
【解析】(1)該拋物線的解析式中只有兩個待定系數(shù),只需將A、B兩點坐標代入即可得解.(2)首先根據(jù)平移條件表示出移動后的函數(shù)解析式,進而用m表示出該函數(shù)的頂點坐標,將其代入直線AB、AC的解析式中,即可確定P在△ABC內(nèi)時m的取值范圍.(3)先在OA上取點N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,顯然在y軸的正負半軸上都有一個符合條件的M點;以y軸正半軸上的點M為例,先證△ABN、△AMB相似,然后通過相關比例線段求出AM的長.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的圖象的相關知識,掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了進一步開展“陽光體育”活動,計劃用2000元購買乒乓球拍,用2800元購買羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購買的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD,BC于點E,F(xiàn),作BH⊥AF于點H,分別交AC,CD于點G,P,連接GE,GF.
(1)求證:△OAE≌△OBG;
(2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由;
(3)試求: 的值(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】線段MN在直角坐標系中的位置如圖所示,若線段M′N′與MN關于y軸對稱,則點M的對應點M′的坐標為( )
A.(4,2)
B.(﹣4,2)
C.(﹣4,﹣2)
D.(4,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2個單位,一只烏龜從A點出發(fā)以2個單位/秒的速度順時針繞正方形運動,另有一只兔子也從A點出發(fā)以6個單位/秒的速度逆時針繞正方形運動,則第2018次相遇在( 。
A. 點A B. 點B C. 點C D. 點D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點D在BC的延長線上,且BD=AB,過點B作BE⊥AC,與BD的垂線DE交于點E.
(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下框中是小明對一道題目的解答以及老師的批改.
題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m的空地,其他三側(cè)內(nèi)墻各保留1m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288m2? |
我的結(jié)果也正確!
(1)小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.結(jié)果為何正確呢?
(2)請指出小明解答中存在的問題,并補充缺少的過程: 變化一下會怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程:
(1)4-m=-m; (2)56-8x=11+x;
(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com