【題目】探究
(1)已知如圖1,若AB∥CD,P為平行線內(nèi)的一點(diǎn)請(qǐng)你判斷∠B+∠P+∠D= 度,并說(shuō)明理由.
(2)如圖2,若AB∥CD ,P1、P2為平行線內(nèi)的兩個(gè)點(diǎn),請(qǐng)求出∠B+∠P1+∠P2+∠D= 度(不需要說(shuō)明理由)
(3)如圖3,如此類(lèi)推若AB∥CD,P1、、P2、P3、P4、……Pn為平行線內(nèi)的n個(gè)點(diǎn),請(qǐng)求出∠B+∠P1+∠P2+∠P3+…….+∠Pn-1+∠Pn+∠D= 度(不需要說(shuō)明理由)
【答案】(1)360°;(2)540°;(3)
【解析】
(1)過(guò)點(diǎn)P作AB的平行線PE,利用平行線的性質(zhì),即可得到∠B+∠BPD+∠D=180°×2=360°;
(2)過(guò)P1作P1F∥AB,過(guò)P2作P2G∥CD,則利用平行線的性質(zhì),即可得到∠B+∠BP1P2+∠P1P2D+∠D的度數(shù);
(3)利用(1)(2)中的結(jié)論,找出規(guī)律,即可得到∠A+∠C1+∠C2+……+∠Cn+1+∠D的度數(shù).
解:(1)如圖,過(guò)點(diǎn)P作AB的平行線PE,
∵AB∥CD,AB∥PE,
∴∠B+∠BPE=180°,∠D+∠DPE=180°,
∵∠BPD=∠BPE+∠DPE,
∴∠B+∠BPD+∠D=180°×2=360°;
故答案為:360°.
(2)如圖,過(guò)P1作C1F∥AB,過(guò)P2作P2G∥DE,
∵AB∥CD,P1F∥AB,過(guò)P2作P2G∥CD,
∴∠B+∠BP1F=180°,∠FP1P2+∠P1P2G=180°,∠GP2D+∠D=180°,
∵∠BP1P2=∠BP1F+∠FP1P2,∠P1P2D=∠P1P2G+∠GP2D,
∴∠B+∠BP1P2+∠P1P2D+∠D=180°×3=540°;
故答案為:540°.
(3)由(1)(2)可知,
當(dāng)B、D兩點(diǎn)之間有1個(gè)點(diǎn)時(shí),∠B+∠BPD+∠D=180°×2=360°;
當(dāng)B、D兩點(diǎn)之間有2個(gè)點(diǎn)時(shí),∠B+∠BP1P2+∠P1P2D+∠D=180°×3=540°;
……
當(dāng)B、D兩點(diǎn)之間有n個(gè)點(diǎn)時(shí),有
∠A+∠C1+∠C2+……+∠Cn+1+∠D=180°(n+1);
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車(chē)在城街路上行駛速度不得超過(guò)km/h.如圖,一輛小汽車(chē)在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車(chē)速檢測(cè)儀正前方m處,過(guò)了2s后,測(cè)得小汽車(chē)與車(chē)速檢測(cè)儀間距離為m,這輛小汽車(chē)超速了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD,CD分別是△ABC兩個(gè)外角的平分線.
(1)求證:∠ACD=∠ADC;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=60°,BC=6,直線MN∥BC,且分別交邊AB,AC于點(diǎn)M,N,已知直線MN將△ABC分為△AMN和梯形MBCN面積之比為5:1的兩部分,如果將線段AM繞著點(diǎn)A旋轉(zhuǎn),使點(diǎn)M落在邊BC上的點(diǎn)D處,那么BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若任意一個(gè)代數(shù)式,在給定的范圍內(nèi)求得的最值恰好也在該范圍內(nèi),則稱(chēng)這個(gè)代數(shù)式是這個(gè)范圍的“友好代數(shù)式”.例如:關(guān)于的代數(shù)式,當(dāng)時(shí),代數(shù)式在時(shí)有最大值,最大值為1;在時(shí)有最小值,最小值為0,此時(shí)最值1,0均在(含端點(diǎn))這個(gè)范圍內(nèi),則稱(chēng)代數(shù)式是的“友好代數(shù)式”.
(1)若關(guān)于的代數(shù)式,當(dāng)時(shí),取得的最大值為________;最小值為________;代數(shù)式________(填“是”或“不是”)的“友好代數(shù)式”;
(2)以下關(guān)于的代數(shù)式,是的“友好代數(shù)式”的是________;
①;②;③;
(3)若關(guān)于的代數(shù)式是的“友好代數(shù)式”,則的值是________;
(4)若關(guān)于的代數(shù)式是的“友好代數(shù)式”,求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)如圖所示的曲尺形框,框和框,用它們分別可以框住下表中的三個(gè)數(shù)(如圖所給示例),
(1)若被框框住的三個(gè)數(shù)中最小的數(shù)為.若這三個(gè)數(shù)的和是,問(wèn)的值是否存在?若存在,求出的值;若不存在,說(shuō)明理由;
(2)若被框框住的三個(gè)數(shù)中最小的數(shù)為.若這三個(gè)數(shù)的和是,問(wèn)的值是否存在?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如圖所示將Rt△ABC沿直線l無(wú)滑動(dòng)地滾動(dòng)至Rt△DEF,則點(diǎn)B所經(jīng)過(guò)的路徑與直線l所圍成的封閉圖形的面積為_____.(結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC為等邊三角形,點(diǎn)D,E為直線BC上兩動(dòng)點(diǎn),且BD=CE. 點(diǎn)F,點(diǎn)E關(guān)于直線AC成軸對(duì)稱(chēng),連接AE,順次連接A,D,F.
(1)如圖1,若點(diǎn)D,點(diǎn)E在邊BC上,試判斷△ADF的形狀并說(shuō)明理由;
(2)如圖2,若點(diǎn)D,點(diǎn)E在邊BC外,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)A在y軸正半軸上,頂點(diǎn)C在x軸正半軸上,拋物線(a<0)的頂點(diǎn)為D,且經(jīng)過(guò)點(diǎn)A、B.若△ABD為等腰直角三角形,則a的值為___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com