如圖,DE是△ABC的中位線,DE=2,AB+AC=12,則梯形DBCE的周長(zhǎng)為( )

A.4
B.8
C.10
D.12
【答案】分析:根據(jù)三角形中位線定理可得BC的長(zhǎng);
根據(jù)中位線的定義得D、E分別是AB、AC的中點(diǎn),可求BD+CE;
根據(jù)周長(zhǎng)公式計(jì)算求解.
解答:解:∵DE是△ABC的中位線,
∴BC=2DE=4;
BD+CE=(AB+AC)=6.
∴梯形DBCE的周長(zhǎng)=DE+BC+BD+CE=2+4+6=12.
故選D.
點(diǎn)評(píng):本題考查了中位線的定義和中位線的性質(zhì),三角形的中位線是指連接三角形兩邊中點(diǎn)的線段,中位線的特征是平行于第三邊且等于第三邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,DE是△ABC的中位線,若AD=4,AE=5,BC=12,則△ADE的周長(zhǎng)為( 。
A、7.5B、15C、30D、24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,若BC=6,則DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,則△ADE和四邊形BCED的面積之比為(  )
A、1:2B、1:3C、1:4D、以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,DE是△ABC的中位線,F(xiàn)G是梯形BCED的中位線,若BC=16cm,則FG的長(zhǎng)是(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、已知:如圖,DE是△ABC的中位線,點(diǎn)P是DE的中點(diǎn),CP的延長(zhǎng)線交AB于點(diǎn)Q,那么S△DPQ:S△ABC=
1:24

查看答案和解析>>

同步練習(xí)冊(cè)答案