已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F。
(1)如圖(1),若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖(2),若∠ABC=135°,過點(diǎn)F作FG∥BC,交AB的延長線于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是____;
(3)在(2)的條件下,若,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖(3)),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若,求線段PQ的長。
解:(1)證明:∵∠ADB=90°,∠ABC=45°,
∴∠BAD=∠ABC=45°,
∴AD=BD,
∵∠BEC=90°,
∴∠CBE+∠C=90°,
∵∠DAC+∠C=90°,
∴∠CBE=∠DAC,
∴△FDB≌△CDA
∵GF∥BD,
∴∠AGF=∠ABC=45°,
∴∠AGF=∠BAD,
∴FA=FG,
∴FG+DC=FA+DF=AD;
(2)FG-DC=AD;
(3)如圖,∵∠ABC=135°,
∴∠ABD=45°,
∵∠ADB=90°,
∴∠DAB=∠DBA=45°,
∴AD=BD,
∵FG∥BC,
∴∠G=∠DBA=∠DAB,
∴AF=FG,
FG2+AF2=AG2,
∴FG=AF=5,
∵DC=3,由(2)知:FG-DC=AD,
∴AD=BD=2,
∴BC=1,DF=3,
∴△FDC為等腰直角三角形,
,
分別過B、N作BH⊥FG于點(diǎn)H,NK⊥BC于點(diǎn)K,
∴四邊形DFHB為矩形,
∴HF=BD=2,BH=DF=3,BH=HG=3,
,
∵sinG=,
,
又∵NK=KG,,
∴BK=BG-KG=BC-NK=
∵∠MBN=∠HBG=45°,
∴∠MBH=∠NBK,
∵∠MHB=∠NKB=90°,
∴△MBH∽△NBK,
,
∴MH=1,
∴FM=1,
∵BC∥FG,
∴∠BCF=∠CFN,
∵∠BPC=∠MPF,CB=FM,
∴△BPC≌△MPF,

∵∠BQC=∠NQF,∠BCF=∠CFN,
∴△BCQ∽△NFQ,
,
,
,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
FG=DC+AD
.(只寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
 
;
(3)在(2)的條件下,若AG=5
2
,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若NG=
3
2
,求線段PQ的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°.
求證:①△BDF≌△ADC;
②FG+DC=AD;
(2)如圖2,若∠ABC=135°,直接寫出FG、DC、AD之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(12)(解析版) 題型:解答題

(2009•哈爾濱)已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是______;
(3)在(2)的條件下,若AG=,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若NG=,求線段PQ的長.

查看答案和解析>>

同步練習(xí)冊答案