【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(人/輛)

45

30

租金(元/輛)

400

280

某中學(xué)根據(jù)實際情況,計劃租用AB型客車共5輛,同時送七年級師生到基地校參加社會實踐活動.設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:

1)用含x的式子填寫下表:

車輛數(shù)(輛)

載客量

租金(元)

A

x

45x

400x

B

5-x

2)若要保證租車費用不超過1900元,求x的最大值.

【答案】1305-x);2805-x);(2x的最大值為4

【解析】

(1)設(shè)租A型客車x輛,則租B型客車(5-x)輛,根據(jù)每輛B型客車的載客量及租車費用,即可完成表格數(shù)據(jù);
(2)根據(jù)總租車費用=租A型客車的費用+租B型客車的費用結(jié)合租車費用不超過1900元,即可得出關(guān)于x的一元一次不等式,解之取其中的最大整數(shù)即可得出結(jié)論.

解:(1)設(shè)租A型客車x輛,則租B型客車(5-x)輛,

A型客車乘坐學(xué)生45x人,B型客車乘坐學(xué)生305-x)人,租A型客車的總租金為400x元,租B型客車的總租金為2805-x)元.

故答案為:305-x);2805-x).

2)根據(jù)題意得:400x+2805-x≤1900,

解得:x≤

∵x為整數(shù),

∴x≤4

答:x的最大值為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CBOA,∠C=A=112°,EFCB上,且滿足∠FOB=AOBDE平分∠COF

(1)求∠EOB的度數(shù);

(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位, 的三個頂點都在格點上.

1)在網(wǎng)格中畫出向下平移3個單位得到的;

2)在網(wǎng)格中畫出關(guān)于直線對稱的;

3)在直線上畫一點,使得的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量被池塘隔開的A,B兩點之間的距離,根據(jù)實際情況,作出如圖所示的圖形,其中ABBE,EFBE,AFBE于點D,CBD有四位同學(xué)分別測量出以下4組數(shù)據(jù):①BC,ACB;CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根據(jù)所測數(shù)據(jù),求出A,B兩點之間距離的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外體育活動,決定開展:籃球、乒乓球、踢毽子、跑步四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種).隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.

(1)樣本中最喜歡籃球項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是 度;

(2)請把條形統(tǒng)計圖補充完整;

(3)若該校有學(xué)生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P、Q分別從點A、B同時開始移動,點P的速度為1 cm/秒,點Q的速度為2 cm/秒,點Q移動到點C后停止,點P也隨之停止運動下列時間瞬間中,能使△PBQ的面積為15cm 的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“九宮圖”傳說是遠古時代洛河中的一個神龜背上的圖案,故又稱“龜背圖”,中國古代數(shù)學(xué)史上經(jīng)常研究這一神話。

⑴現(xiàn)有1,2,3,4,5,6,7,8,9共九個數(shù)字,請將它們分別填入圖1的九個方格中,使得每行的三個數(shù)、每列的三個數(shù)、斜對角的三個數(shù)之和都等于15.

⑵通過研究問題⑴,利用你發(fā)現(xiàn)的規(guī)律,將3,5,-7,1,7,-3,9,-5,-1

這九個數(shù)字分別填入圖2的九個方格中,使得橫、豎、斜對角的所有三個數(shù)的和都相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B分別在射線OMON上運動(不與點O重合).

1)如圖1,若∠MON=90°,∠OBA、∠OAB的平分線交于點C,則∠ACB= °;
2)如圖2,若∠MON=n°,∠OBA、∠OAB的平分線交于點C,求∠ACB的度數(shù);
3)如圖2,若∠MON=n°,AOB的外角∠ABN、∠BAM的平分線交于點D,求∠ACB與∠ADB之間的數(shù)量關(guān)系,并求出∠ADB的度數(shù);
4)如圖3,若∠MON=80°,BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點E.試問:隨著點A、B的運動,∠E的大小會變嗎?如果不會,求∠E的度數(shù);如果會,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案