某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上修建一個(gè)矩形花圃ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成(如圖所示),若設(shè)AB為x(m)
(1)用含x的代數(shù)式表示BC的長(zhǎng);
(2)若花園的面積為15m2,試求出此時(shí)x的值.
分析:(1)利用長(zhǎng)方形的周長(zhǎng)即可解答;
(2)利用長(zhǎng)方形的面積列方程解答即可.
解答:解:(1)BC=40-2x;

(2)不能,理由是:
根據(jù)題意列方程的,
x(40-2x)=150,
解得x1=15,x2=5;
40-2x=30(米),而墻長(zhǎng)15m,不合實(shí)際,
因此x的值為15;
點(diǎn)評(píng):考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)x表示出矩形的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、某居民小區(qū)稿綠化,要在一塊菱形空地上建花壇.現(xiàn)征集設(shè)計(jì)方案,要求使用設(shè)計(jì)的圖案中包括圓和正方形兩種圖形(圓和正方形的個(gè)數(shù)不限),同時(shí)又不改變空地原有的軸對(duì)稱效果,請(qǐng)你畫出一個(gè)設(shè)計(jì)方案,用一兩句話表示你的設(shè)計(jì)思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是某居民小區(qū)的一塊直角三角形空地ABC,其斜邊AB=100米,直角邊AC=80米.
(1)求另一條直角BC的長(zhǎng)度;
(2)現(xiàn)要利用這塊空地建一個(gè)矩形停車場(chǎng)DCFE,使得D在BC邊上,E、F分別是AB、AC邊的中點(diǎn).求矩形DCFE的面積;
(3)現(xiàn)要利用這塊空地建一個(gè)正方形停車場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的點(diǎn).求正方形DCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某居民小區(qū)要在一塊長(zhǎng)方形的空地上建花壇,現(xiàn)征集設(shè)計(jì)方案.要求設(shè)計(jì)的圖案由圓和正方形組成(圓和正方形的個(gè)數(shù)不限).滿足方案1的整個(gè)長(zhǎng)方形花壇成軸對(duì)稱圖形且對(duì)稱軸只有一條;滿足方案2的整個(gè)長(zhǎng)方形花壇成軸對(duì)稱圖形且對(duì)稱軸只有兩條.請(qǐng)你分別在下面兩個(gè)方框內(nèi)畫出兩種設(shè)計(jì)方案并畫出其對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某居民小區(qū)要在一塊長(zhǎng)方形的空地上建花壇,現(xiàn)征集設(shè)計(jì)方案.要求設(shè)計(jì)的圖案由圓和正方形組成(圓和正方形的個(gè)數(shù)不限).滿足方案1的整個(gè)長(zhǎng)方形花壇成軸對(duì)稱圖形且對(duì)稱軸只有一條;滿足方案2的整個(gè)長(zhǎng)方形花壇成軸對(duì)稱圖形且對(duì)稱軸只有兩條.請(qǐng)你分別在下面兩個(gè)方框內(nèi)畫出兩種設(shè)計(jì)方案并畫出其對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某居民小區(qū)要在一塊長(zhǎng)方形的空地上建花壇,現(xiàn)征集設(shè)計(jì)方案.要求設(shè)計(jì)的圖案由圓和正方形組成(圓和正方形的個(gè)數(shù)不限).滿足方案1的整個(gè)長(zhǎng)方形花壇成軸對(duì)稱圖形且對(duì)稱軸只有一條;滿足方案2的整個(gè)長(zhǎng)方形花壇成軸對(duì)稱圖形且對(duì)稱軸只有兩條.請(qǐng)你分別在下面兩個(gè)方框內(nèi)畫出兩種設(shè)計(jì)方案并畫出其對(duì)稱軸.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案