14.如圖,在△ABC和△ADE中,$\frac{AB}{AD}$=$\frac{BC}{DE}$=$\frac{AC}{AE}$,∠BAD=20°,求∠CAE的度數(shù).

分析 由在△ABC和△ADE中,$\frac{AB}{AD}$=$\frac{BC}{DE}$=$\frac{AC}{AE}$,可證得△ABC∽△ADE,然后由相似三角形的對應(yīng)角相等,求得答案.

解答 解:∵在△ABC和△ADE中,$\frac{AB}{AD}$=$\frac{BC}{DE}$=$\frac{AC}{AE}$,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠CAE=∠BAD=20°.

點評 此題考查了相似三角形的判定與性質(zhì).注意證得△ABC∽△ADE是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

4.已知角α終邊上一點P(-5,12),則sinα+cosα=$\frac{7}{13}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

5.絕對值不小于1,而小于4的所有的整數(shù)有( 。
A.±1,±2,±3,±4B.±2,±3C.±1,±2,±3D.±2,±3,±4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.把下列各數(shù)分別填入相應(yīng)的大括號中:
$\sqrt{56}$,-$\frac{7}{3}$,3.14,$\frac{π}{3}$,$\sqrt{121}$,0,$\sqrt{3}-\sqrt{5}$,$\root{3}{-27}$,-$\frac{\sqrt{6}}{2}$,0.24,(-2)2016,-52
整數(shù):{$\sqrt{121}$,0,$\root{3}{-27}$,(-2)2016,-52…}
分數(shù):{-$\frac{7}{3}$,3.14,0.24…}
負實數(shù):{-$\frac{7}{3}$,$\root{3}{-27}$,-$\frac{\sqrt{6}}{2}$,0.24,(-2)2016,-52…}
無理數(shù):{$\sqrt{56}$,$\frac{π}{3}$,$\sqrt{3}-\sqrt{5}$,-$\frac{\sqrt{6}}{2}$…}.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.下列多項式相乘,不能用平方差公式計算的是(  )
A.(x-2y)(2y+x)B.(2y-x)(-x-2y)C.(x-2y)(-x-2y)D.(-2y-x)(x+2y)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

19.已知x1,x2是一元二次方程x2=x+2的兩根,則x12+x22=5.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.已知$\frac{y}{x}$=$\frac{1}{3}$,則$\frac{y-x}{x}$的值為-$\frac{2}{3}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.已知:如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于點N,交BC的延長線于點M,若∠A=40°.
(1)求∠NMB的度數(shù);
(2)如果將(1)中∠A的度數(shù)改為70°,其他條件不變,再求∠NMB的度數(shù);
(3)通過對(1)中和(2)中結(jié)果的分析,猜想∠NMB的度數(shù)與∠A的度數(shù)有怎樣的等量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.分解因式:$\frac{1}{2}$x2y+xy2+$\frac{1}{2}$y3

查看答案和解析>>

同步練習冊答案