【題目】如圖已知一次函數(shù)y=﹣x+b與反比例函數(shù)y= 的圖象有2個公共點,則b的取值范圍是( )

A.b>2
B.﹣2<b<2
C.b>2或b<﹣2
D.b<﹣2

【答案】C
【解析】解:將y=﹣x+b代入y= 中,

得:﹣x+b=

整理,得:x2﹣bx+1=0.

∵一次函數(shù)y=﹣x+b與反比例函數(shù)y= 的圖象有2個公共點,

∴方程x2﹣bx+1=0有兩個不相等的實數(shù)根,

∴△=(﹣b)2﹣4>0,

解得:b<﹣2或b>2.

所以答案是:C.

【考點精析】通過靈活運用求根公式,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt>0秒.

1寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) 用含t的代數(shù)式表示

2動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

3若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形, ,上一點,是三角形外上一點, 為線段上一點,連接,且

1)若,求的度數(shù);

2)若,求的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)商計劃將一批海產(chǎn)品由A地運往B地.汽車貨運公司和鐵路貨運公司均開辦海產(chǎn)品運輸業(yè)務(wù).已知運輸路程為120千米,汽車和火車的速度分別為60千米/時、100千米/時.兩貨運公司的收費項目及收費標(biāo)準(zhǔn)如下表所示:

運輸工具

運輸費單價/

(元/噸·千米)

冷藏費單價/

(元/噸·小時)

過路費/元

裝卸及管理費/元

2

5

200

0

1.8

5

0

1600

注:“元/噸·千米”表示每噸貨物每千米的運費;“元/噸·小時”表示每噸貨物每小時的冷藏費.

(1)設(shè)該批發(fā)商待運的海產(chǎn)品有x(),汽車貨運公司和鐵路貨運公司所要收取的費用分別為y1()y2(),試求y1y2x之間的函數(shù)關(guān)系式.

(2)若該批發(fā)商待運的海產(chǎn)品不少于30噸,為節(jié)省運費,他應(yīng)選擇哪個貨運公司承擔(dān)運輸業(yè)務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

B. 角平分線上的點到這個角兩邊的距離相等

C. 三角形三條角平分線的交點到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為直線BC上一定點,點A在直線外一定點.在直線BC上取點P,使得以O、AP為頂點的三角形為等腰三角形.

(1)當(dāng)∠AOC=30°時,如果我們通過分類討論、畫圖嘗試可以找到滿足條件的點P共有______個.

(2)若在直線BC上有且只有兩個滿足條件的點P,則∠AOC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增加環(huán)保意識,某社區(qū)計劃開展一次減碳環(huán)保,減少用車時間的宣傳活動,對部分家庭五月份的平均每天用車時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收 集的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調(diào)查了多少個家庭?

(2)將圖中的頻數(shù)分布直方圖補充完整;

(3)求用車時間在 1 小時~1.5 小時的部分對應(yīng)的扇 形圓心角的度數(shù);

(4)若該社區(qū)有車家庭有 1 600 個,請你估計該社區(qū)用車時間不超過 1.5 小時的約有多少個家庭.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點E在線段DC上,點A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長AE交OG于點H.

(1)求證:∠DAE=∠DCG.
(2)求線段HE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知: 2 型車和 1 型車載滿貨物一次可運貨 10 噸; 1 型車和 2 型車載滿貨物一次可運貨 11 根據(jù)以上信息, 解答下列問題:

1 1 型車和 1 型車載滿貨物一次可分別運貨多少噸?

2 某物流公司現(xiàn)有貨物若干噸要運輸, 計劃同時租用型車 6 輛,型車 8 輛, 一次運完, 且恰好每輛車都滿載貨物, 請求出該物流公司有多少噸貨物要運輸?

查看答案和解析>>

同步練習(xí)冊答案