【題目】如圖,已知點(diǎn),,拋物線:(為常數(shù))與軸的交點(diǎn)為.
(1)經(jīng)過點(diǎn),求它的解析式,并寫出此時(shí)的對(duì)稱軸及頂點(diǎn)坐標(biāo).
(2)設(shè)點(diǎn)的縱坐標(biāo)為,求的最大值,此時(shí)上有兩點(diǎn)( ,),(,),其中,比較與的大;
(3)當(dāng)線段被只分為兩部分,且這兩部分的比是1:4時(shí),求的值.
【答案】(1),對(duì)稱軸,頂點(diǎn);(2)當(dāng)時(shí),;(3)的值為0或-5.
【解析】
(1)把點(diǎn)B的坐標(biāo)代入函數(shù)解析式,列出關(guān)于h的方程,借助于方程可以求得h的值;利用拋物線函數(shù)解析式得到該圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)把點(diǎn)C的坐標(biāo)代入函數(shù)解析式得到:,則由二次函數(shù)的最值的求法易得yc的最大值,并可以求得此時(shí)拋物線的解析式,根據(jù)拋物線的增減性來求y1與y2的大。
(3)根據(jù)已知條件“O(0,0),A(5,0),線段OA被l只分為兩部分,且這兩部分的比是1:4”可以推知把線段OA被l只分為兩部分的點(diǎn)的坐標(biāo)分別是(1,0),(4,0).由二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可以求得h的值.
解:(1)把 代入(或),
對(duì)稱軸,頂點(diǎn).
(2)點(diǎn)的橫坐標(biāo)為0,則,當(dāng)時(shí),有最大值為1.此時(shí),為,對(duì)稱軸為y軸,當(dāng)時(shí),隨著的增大而減小,
當(dāng)時(shí),.
(3)把分1:4兩部分的點(diǎn)為(-1,0)或(-4,0).
把代入得.
當(dāng)時(shí),被分為三部分,不合題意,舍去.
同理,把代入得(舍去).
∴h的值為0或-5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是方城縣潘河的某一段,現(xiàn)要估算河的寬度(即河兩岸相對(duì)的兩點(diǎn)A、B間的距離),可以按如下步驟操作:①先在河的對(duì)岸選定一個(gè)目標(biāo)作為點(diǎn)A;②再在河的這一邊選定點(diǎn)B和點(diǎn)C,使AB⊥BC;③再選定點(diǎn)E,使EC⊥BC,然后用視線確定BC和AE的交點(diǎn)D.
(1)用皮尺測(cè)得BC=177米,DC=61米,EC=50米,求河的寬度AB;(精確到0.1米)
(2)請(qǐng)用所學(xué)過的知識(shí)設(shè)計(jì)一種測(cè)量旗桿高度AB的方案.
要求:①畫出示意圖,所測(cè)長(zhǎng)度用a、b、c等表示,直接標(biāo)注在圖中線段上;
②不要求寫操作步驟;③結(jié)合所測(cè)數(shù)據(jù)直接用含a、b、c等字母的式子表示出旗桿高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點(diǎn) P 為 AB 邊上的定點(diǎn),且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動(dòng)點(diǎn) E,當(dāng)的值是多少時(shí),△PDE 的周長(zhǎng)最小?
(3)如圖(3),點(diǎn) Q 是邊 AB 上的定點(diǎn),且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長(zhǎng)交 AB 的延長(zhǎng)線于點(diǎn) F,連接 CF,G 為 CF 的中點(diǎn),M、N 分別為線段 QF 和 CD 上的動(dòng)點(diǎn),且始終保持 QM=CN,MN 與 DF 相交于點(diǎn) H,請(qǐng)問 GH 的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)立德樹人的根本任務(wù),加強(qiáng)思改、歷史學(xué)科教師的專業(yè)化隊(duì)伍建設(shè).某校計(jì)劃從前來應(yīng)聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設(shè)每位畢業(yè)生被錄用的機(jī)會(huì)相等
(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是 :
(2)若從中錄用兩人,請(qǐng)用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勘測(cè)隊(duì)按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.
(1)A,B間的距離為______km;
(2)計(jì)劃修一條從C到鐵路AB的最短公路l,并在l上建一個(gè)維修站D,使D到A,C的距離相等,則C,D間的距離為______km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣2,﹣1,0,,1,2這六個(gè)數(shù)字中,隨機(jī)抽取一個(gè)數(shù)記為a,則使得關(guān)于x的方程=1的解為非負(fù)數(shù),且滿足關(guān)于x的不等式組只有三個(gè)整數(shù)解的概率是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2﹣3x+c與y軸的交點(diǎn)為(0,2),則下列說法正確的是( 。
A. 拋物線開口向下
B. 拋物線與x軸的交點(diǎn)為(﹣1,0),(3,0)
C. 當(dāng)x=1時(shí),y有最大值為0
D. 拋物線的對(duì)稱軸是直線x=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校其中九年級(jí)的3個(gè)班學(xué)生的捐款金額如下表:
吳老師統(tǒng)計(jì)時(shí)不小心把墨水滴到了其中兩個(gè)班級(jí)的捐款金額上,但他知道下面三條信息:
信息一:這三個(gè)班的捐款總金額是7700元;
信息二:二班的捐款金額比三班的捐款金額多300元;
信息三:三班學(xué)生平均每人捐款的金額大于49元,小于50元.
請(qǐng)根據(jù)以上信息,幫助吳老師解決下列問題:
(1)求出二班與三班的捐款金額各是多少元;
(2)求出三班的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,四條拋物線如圖所示,其解析式中的二次項(xiàng)系數(shù)一定小于1的是( 。
A. y1 B. y2 C. y3 D. y4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com