【題目】如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求點(diǎn)D坐標(biāo)及二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
【答案】(1)D(-2,3);y=-2x+3;(2)x<-2或x>1.
【解析】
(1)根據(jù)拋物線的對稱性來求點(diǎn)D的坐標(biāo);設(shè)二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c常數(shù)),把點(diǎn)A、B、C的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)a、b、c的方程組,通過解方程組求得它們的值即可;(2)根據(jù)圖象直接寫出答案.
(1)∵如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),
∴對稱軸是x=-3=-1.
又點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對對稱點(diǎn),
∴D(-2,3);
設(shè)二次函數(shù)的解析式為y=+bx+c(a≠0,a、b、c常數(shù)),
根據(jù)題意得,,
解得 a=-1,b=-2,c=3,
所以二次函數(shù)的解析式為y=-2x+3;
(2)如圖,一次函數(shù)值大于二次函數(shù)值的x的取值范圍是x<-2或x>1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形.
(1)如圖1,點(diǎn)D是邊BC的中點(diǎn),∠ADE=60°,且DE交△ABC外角∠ACF的平分線CE于點(diǎn)E,求證:AD=DE;(提示:取AB的中點(diǎn)G,連接DG)
(2)小穎對(1)題進(jìn)行了探索:如果將(1)題中的“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是直線BC上任意一點(diǎn)(B、C兩點(diǎn)除外)”,其它條件不變,結(jié)論AD=DE是否仍然成立?小穎將點(diǎn)D的位置分為三種情形,畫出了圖2、圖3、圖4,現(xiàn)在請你在圖2、圖3、圖4中選擇一種情形,幫小穎驗(yàn)證:結(jié)論AD=DE是否仍然成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3
(1)請你把已知的二次函數(shù)化成y=(x﹣h)2+k的形式,并在平面直角坐標(biāo)系中畫出它的圖象;
(2)如果A(x1,y1)、B(x2,y2)是(1)中像上的兩點(diǎn),且x1<x2<1,請直接寫出y1、y2的大小關(guān)系為 .
(3)利用(1)中的圖象表示出方程x2﹣2x﹣1=0的根,畫在(1)的圖象上即可,要求保留畫圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,、兩個圓柱形容器放置在同一水平桌面上,開始時容器中盛滿水,容器中盛有高度為1 dm的水,容器下方裝有一只水龍頭,容器向容器勻速注水.設(shè)時間為t (s),容器、中的水位高度(dm)、(dm)與時間t (s)之間的部分函數(shù)圖像如圖②所示.根據(jù)圖中數(shù)據(jù)解答下列問題:
(1)容器向容器注水的速度為 dm3/s(結(jié)果保留),容器的底面直徑 dm;
(2)當(dāng)容器注滿水后,容器停止向容器注水,同時開啟容器的水龍頭進(jìn)行放水,放水速度為dm3/s.請?jiān)趫D②中畫出容器中水位高度與時間 ()的函數(shù)圖像,說明理由;
(3)當(dāng)容器B注滿水后,容器A繼向容器B注水,同時開啟容器B的水龍頭進(jìn)行放水,放水速度為dm3/s,直至容器、水位高度相同時,立即停止放水和注水,求容器向容器全程注水時間.(提示:圓柱體積=圓柱的底面積×圓柱的高)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店銷售一種進(jìn)價為每本10元的筆記本,為獲得高利潤,以不低于進(jìn)價進(jìn)行銷售,結(jié)果發(fā)現(xiàn),每月銷售量y與銷售單價x之間的關(guān)系可以近似地看作一次函數(shù):y=﹣5x+150,物價部門規(guī)定這種筆記本每本的銷售單價不得高于18元.
(1)當(dāng)每月銷售量為70本時,獲得的利潤為多少元;
(2)該文具店這種筆記本每月獲得利潤為W元,求每月獲得的利潤W元與銷售單價x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤,最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(,1)在射線OM上,點(diǎn)B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個Rt△BA1B1,以A1B1為直角邊作第三個Rt△A1B1A2,…,依次規(guī)律,得到Rt△B2017A2018B2018,則點(diǎn)B2018的縱坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知港口位于觀測點(diǎn)北偏東方向,且其到觀測點(diǎn)正北方向的距離的長為,一艘貨輪從港口以的速度沿如圖所示的方向航行,后達(dá)到處,現(xiàn)測得處位于觀測點(diǎn)北偏東方向,求此時貨輪與觀測點(diǎn)之間的距離的長(精確到).(參考數(shù)據(jù):,,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,中,,,.
點(diǎn)從點(diǎn)開始沿邊向以的速度移動,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動.如果、分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能說明理由.
若點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動,點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動,、同時出發(fā),問幾秒后,的面積為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com