判斷下列方程,是一元二次方程的有   
(1)x3-2x2+5=0;   (2)x2=1;   (3);(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;
(6)ax2+bx+c=0.
【答案】分析:根據(jù)一元二次方程的定義對6個(gè)選項(xiàng)逐一進(jìn)行分析.
解答:解:(1)中最高次數(shù)是3不是2,故本選項(xiàng)錯(cuò)誤;
(2)符合一元二次方程的定義,故本選項(xiàng)正確;
(3)原式可化為x2-=0,符合一元二次方程的定義,故本選項(xiàng)正確;
(4)原式可化為2x2+x-1=0,符合一元二次方程的定義,故本選項(xiàng)正確;
(5)原式可化為2x+1=0,符合一元二次方程的定義,故本選項(xiàng)正確;
(6)ax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項(xiàng)錯(cuò)誤.
故答案為(2)、(3)、(4).
點(diǎn)評(píng):本題考查了一元二次方程的概念.只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特別要注意a≠0的條件.這是在做題過程中容易忽視的知識(shí)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

判斷下列方程,是一元二次方程的有
(2)、(3)、(4)
(2)、(3)、(4)

(1)x3-2x2+5=0;   (2)x2=1;   (3)5x2-2x-
1
4
=x2-2x+
3
5
;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;
(6)ax2+bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

判斷下列方程,是一元二次方程的有______.
(1)x3-2x2+5=0;  (2)x2=1;  (3)數(shù)學(xué)公式;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;
(6)ax2+bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

判斷下列方程,是一元二次方程的有______.
(1)x3-2x2+5=0;   (2)x2=1;   (3)5x2-2x-
1
4
=x2-2x+
3
5
;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;
(6)ax2+bx+c=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:填空題

判斷下列方程,是一元二次方程的有(    )。
(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-=x2-2x+;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;(6)ax2+bx+c=0。

查看答案和解析>>

同步練習(xí)冊答案