【題目】(-2100比(-299大 ( )

A. 2 B. 2 C. 299 D. 3×299

【答案】D

【解析】分析:求(-2100比(-299大多少,用減法.

解答:解:(-2100--299

=2100+299

=299×2+1

=3×299

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2bxc經(jīng)過(guò)ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)Cx軸的正半軸上.

1求該拋物線的函數(shù)解析式;

2點(diǎn)F為線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)FFEx軸,FGy軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);

32中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EFAC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A-13)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)是()

A. 1,3B. -1,-3C. 1-3D. -3,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

問(wèn)題:如圖1,在△中,點(diǎn)的中點(diǎn),求證: 小明提供了他研究這個(gè)問(wèn)題的思路:從點(diǎn)的中點(diǎn)出發(fā),可以構(gòu)造以為鄰邊的平行四邊形,結(jié)合平行四邊形的性質(zhì)以及三角形兩邊之和大于第三邊的性質(zhì)便可解決這個(gè)問(wèn)題.請(qǐng)結(jié)合小明研究問(wèn)題的思路,解決下列問(wèn)題:

(1)完成上面問(wèn)題的解答;

(2)如果在圖1中,∠=60°,延長(zhǎng),使得,延長(zhǎng),使得,連結(jié),如圖2. 請(qǐng)猜想線段與線段之間的數(shù)量關(guān)系.并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展課外體育活動(dòng),決定開(kāi)設(shè)A:籃球、B:乒乓球、C:踢毽子、D:跑步四種活動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題.

(1) 樣本中最喜歡A項(xiàng)目的人數(shù)所占的百分比為 ;

(2) 請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3) 若該校有學(xué)生1700人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正六邊形的中心角為__________________度;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若△ABC在第一象限,則△ABC關(guān)于x軸對(duì)稱的圖形所在的位置是( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,FAB的中點(diǎn),DEAB交于點(diǎn)G,EFAC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

EFAC四邊形ADFE為菱形;AD=4AG;FH=BD;其中正確結(jié)論的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:ADE≌△CDF;

(2)填空:當(dāng)t為_(kāi)________s時(shí),四邊形ACFE是菱形;

查看答案和解析>>

同步練習(xí)冊(cè)答案