【題目】計算題
(1)計算:
(2)(﹣a23﹣(﹣a32+2a5(﹣a)
(3)(2a+b)(2a-b)+3(2a-b) 2+(-3a)(4a-3b)

【答案】
(1)解:原式=-4+1- +( 4
=-3
(2)解:(﹣a23﹣(﹣a32+2a5(﹣a)
=
= 。
(3)解:(2a+b)(2a-b)+3(2a-b) 2+(-3a)(4a-3b)

=
【解析】(1)根據(jù)負指數(shù),零指數(shù)乘方的意義,及積的乘方法則的逆用,先算乘方,再根據(jù)有理數(shù)的加減法法則計算出結(jié)果即可;
(2)根據(jù)積的乘方的性質(zhì)先算乘方,再計算單項式的乘法,最后計算整式的加減法,合并化為最簡形式;
(3)根據(jù)平方差公式,完全平方公式,單項式乘以多項式去括號,然后按照整式的加減法計算方法,合并同類項化為最簡形式即可。
【考點精析】關于本題考查的零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì),需要了解零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=(x﹣2)2+3的最小值是(
A.2
B.3
C.﹣2
D.﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關系,并求出函數(shù)關系式;

(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)

(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC , BD平分∠ABC . 過點DAB的平行線,過點BAC的平行線,兩平行線相交于點EBCDE于點F , 連接CE . 求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.

(1)求該拋物線的解析式;

(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.

(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構成以OC為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(﹣3.5,y1),B(﹣1,y2)為二次函數(shù)y=﹣(x+22+h的圖象上的兩點,則y1_____y2(填,).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不解方程,判斷方程2x2+3x﹣4=0的根的情況是(
A.有兩個相等的實數(shù)根
B.有兩個不相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M為線段AB的中點,C點將線段MB分成MC:CB=1:2的兩部分,若MC=2,求線段AB的長.

從(1)、(2)中任選一道小題解答.
(1)認真閱讀,理解題意,把解題過程補充完整:
解:因為MC:CB=1:2,MC=2.
所以CB=
所以MB=+=6
因為M是AB中點,
所以AB= . MB=
(2)若你有別的計算方法,也可以獨立完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)閱讀以下內(nèi)容并回答問題:

小雯用這個方法進行了嘗試,點 向上平移3個單位后的對應點 的坐標為 , 過點 的直線的解析式為.
(2)小雯自己又提出了一個新問題請全班同學一起解答和檢驗此方法,請你也試試看:將直線 向右平移1個單位,平移后直線的解析式為 , 另外直接將直線 (填“上”或“下”)平移個單位也能得到這條直線.
(3)請你繼續(xù)利用這個方法解決問題:
對于平面直角坐標系xOy內(nèi)的圖形M,將圖形M上所有點都向上平移3個單位,再向右平移1個單位,我們把這個過程稱為圖形M的一次“斜平移”. 求將直線 進行兩次“斜平移”后得到的直線的解析式.

查看答案和解析>>

同步練習冊答案