如圖1,△ABC和△GAF是兩個全等的等腰直角三角形,圖中相似三角形(不包括全等)共有                                                                               (      )
A.1對B.2對
C.3對D.4對
C

根據(jù)已知及相似三角形的判定方法即可找到存在的相似三角形.
解:∵△ABC和△GAF是兩個全等的等腰直角三角形
∴∠B=∠C=∠FAG=∠F=45°,∠BAC=∠FGA=90°
∵∠ADC=∠ADE,∠AEB=∠C+∠EAC=∠DAE+∠EAC=∠DAC,
∴△ADC∽△EDA
△EDA∽△EAB
△ADC∽△EAB
∴共有3對.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)
已知,在△ABC中,∠BAC=90°,AB=AC,BC=,點D、EBC邊上(均不與點BC重合,點D始終在點E左側(cè)),且∠DAE=45°.
小題1:(1)請在圖①中找出兩對相似但不全等的三角形,寫在橫線上      ,       ;
小題2:(2)設(shè)BEm,CDn,求mn的函數(shù)關(guān)系式,并寫出自變量n的取值范圍;
小題3:(3)如圖②,當(dāng)BECD時,求DE的長;
小題4:(4)求證:無論BECD是否相等,都有DE2=BD2+CE2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

兩個相似三角形的面積分別為6和24,且他們的周長的和為36,則其中較小的三角形的周長為_________cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分7分)是繞點旋轉(zhuǎn)的兩個相似三角形,其中、為對應(yīng)角.

小題1:(1)如圖1,若分別是以為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點、、在同一條直線上的位置時,請直接寫出線段與線段的關(guān)系;
小題2:(2)若為含有角的直角三角形,且兩個三角形旋轉(zhuǎn)到如圖2的位置時,試確定線段與線段的關(guān)系,并說明理由;
小題3:(3)若為如圖3的兩個三角形,且=,,在繞點旋轉(zhuǎn)的過程中,直線夾角的度數(shù)是否改變?若不改變,直接用含、的式子表示夾角的度數(shù);若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,給出下列條件:①;②;③;
其中單獨能夠判定的個數(shù)為(  )
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在斜坡的頂部有一鐵塔,的中點,是水平的,在陽光的照射下,塔影留在坡面上.已知鐵塔底座寬,塔影長,小明和小華的身高都是1.5m,  同一時刻,小明站在點處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為,那么塔高為………………… …【   】

.22m      .22.5m     .13.5m      .24m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設(shè)運動時間為t秒.

小題1:(1)填空:菱形ABCD的邊長是    、面積是  、 高BE的長是   ;
小題2:(2)探究下列問題:
若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當(dāng)點Q在線段BA上時
② △APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
小題3:(3)在運動過程中是否存在某一時刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足
,連結(jié)MC,NC,MN

小題1:(1)填空:與△ABM相似的三角形是△       ,=        ;(用含a的代數(shù)式表示)
小題2:(2)求的度數(shù);
小題3:(3)猜想線段BMDNMN之間的等量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)在Rt△ACB中,∠ACB=90°,D是AB邊上一點,以BD為直徑的⊙O與邊AC相切于點E,連結(jié)DE并延長,與BC的延長線交于點F.

小題1:(1)求證:BD=BF.
小題2:(2)若BC=6,AD=4,求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案