精英家教網(wǎng)某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.
分析:(1)表示出BC的長120-2x,由矩形的面積公式得出答案;
(2)設(shè)出圓的半徑和藥材種植區(qū)外四中平面路面的寬,利用題目中的等量關(guān)系列出二元一次方程組,求得半徑和路面寬,當路面寬滿足題目要求時,方案可行,否則不行.
解答:解:(1)∵AB=x,∴BC=120-2x,
∴S=x(120-2x)=-2x2+120x;
當x=
120
2×2
=30時,S有最大值為
0-1202
4×(-2)
=1800;

(2)設(shè)圓的半徑為r米,路面寬為a米,
根據(jù)題意得:
4r+2a=60
2r+2a=30

解得:
r=15
a=0

∵路面寬至少要留夠0.5米寬,
∴這個設(shè)計不可行.
點評:本題考查了二次函數(shù)的應用,題目中還涉及到了二元一次方程組及方案設(shè)計的相關(guān)知識,是一道難度適中的綜合題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本小題滿分8分)
某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.

【小題1】(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
【小題2】(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•成都)某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川成都卷)數(shù)學解析版 題型:解答題

(2011•成都)某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年四川省營山縣九年級上學期期末考試數(shù)學卷 題型:解答題

(本小題滿分8分)

    某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.

    1.(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;

    2.(2)學校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

 

查看答案和解析>>

同步練習冊答案