【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )
A. (,) B. (,) C. (2,-2) D. (,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張.
(1)若從中隨機(jī)取出1張紙幣,求取出紙幣的金額是20元的概率;
(2)若從中隨機(jī)取出2張紙幣,求取出紙幣的總額可購買一件51元的商品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:①aa2=_____;
②=_____;
③a0=_____(a≠0);
④=_____;
⑤﹣6a÷3a=_____;
⑥=_____;
⑦=_____;
⑧=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:如圖(1)和圖(2)中,點(diǎn)P是平面內(nèi)一點(diǎn),如果=2或=,稱點(diǎn)P是線段AB的強(qiáng)弱點(diǎn).
(1)如圖2,在Rt△APB中,∠APB=90°,∠A=30°,問:點(diǎn)B是否是線段AP的強(qiáng)弱點(diǎn)?請(qǐng)說明理由;
(2)如圖3,在Rt△ABC中,∠ACB=90°,B是線段AC的強(qiáng)弱點(diǎn)(BA>BC),BD是Rt△ABC的角平分線,求證:點(diǎn)D是線段AC上的強(qiáng)弱點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,⊙O為Rt△ABC的內(nèi)切圓,切點(diǎn)為D、E、F,則⊙O的半徑為( 。
A. cm B. 1cm C. cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,OA=OB=10,∠AOB=80°,以點(diǎn)O為圓心,6為半徑的優(yōu)弧弧MN分別交OA、OB于點(diǎn)M,N.
(1)點(diǎn)P在右半弧上(∠BOP是銳角),將OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得,求證:AP=BP;
(2)點(diǎn)T在左半弧上,若AT與弧相切,求點(diǎn)T到OA的距離;
(3)設(shè)點(diǎn)Q在優(yōu)弧弧MN上,當(dāng)△AOQ的面積最大時(shí),直接寫出∠BOQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12,BC=8,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點(diǎn)D是射線CB上的一個(gè)動(dòng)點(diǎn),△ADE是等邊三角形,點(diǎn)F是AB的中點(diǎn),連接EF.
(1)如圖,點(diǎn)D在線段CB上時(shí),
①求證:△AEF≌△ADC;
②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;
(2)當(dāng)∠DAB=15°時(shí),求△ADE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com