精英家教網(wǎng)如圖,E是平行四邊形ABCD的AD邊上一點,過點E作EF∥AB交BD于F,若DE:EA=2:3,EF=4,則CD的長為( 。
A、
16
3
B、8
C、10
D、16
分析:由EF∥AB,根據(jù)平行線分線段成比例定理,即可求得
DE
DA
=
EF
AB
,則可求得AB的長,又由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊相等,即可求得CD的長.
解答:解:∵DE:EA=2:3,
∴DE:DA=2:5,
∵EF∥AB,
DE
DA
=
EF
AB
,
∵EF=4,
2
5
=
4
AB
,
解得:AB=10,
∵四邊形ABCD是平行四邊形,
∴CD=AB=10.
故選C.
點評:此題考查了平行線分線段成比例定理與平行四邊形的性質(zhì).此題難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、如圖,E是平行四邊形ABCD的邊BA延長線上一點,連接EC,交AD于F.
(1)寫出圖中的三對相似三角形(注意:不添加輔助線);
(2)請在你所找出的相似三角形中選一對,說明相似的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黃埔區(qū)一模)如圖,AC是平行四邊形ABCD的對角線,∠ACB=∠ACD.
求證:AB=AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•荊州模擬)如圖,G是平行四邊形ABCD的邊CD延長線上一點,BG交AC于E,交AD于F,則圖中與△FGD相似的三角形有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,ABCD是平行四邊形,∠DAB=α,AC是對角線.△ADC繞點A旋轉(zhuǎn)β度角,得到△AD′C′,連結(jié)D′B.若△ABC≌△BAD′,試求出α與β的關(guān)系.

查看答案和解析>>

同步練習冊答案