【題目】如圖,已知,添加以下條件,不能判定的是(

A. B. C. D.

【答案】C

【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)定理逐個(gè)判斷即可.

A、A=D,ABC=DCB,BC=BC,符合AAS定理,即能推出ABC≌△DCB,故本選項(xiàng)錯(cuò)誤;

B、ABC=DCB,BC=CB,ACB=DBC,符合ASA定理,即能推出ABC≌△DCB,故本選項(xiàng)錯(cuò)誤;

C、ABC=DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出ABC≌△DCB,故本選項(xiàng)正確;

D、AB=DC,ABC=DCB,BC=BC,符合SAS定理,即能推出ABC≌△DCB,故本選項(xiàng)錯(cuò)誤;

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,邊上的高,則邊的長(zhǎng)為( )

A. 4 B. 14 C. 4 或14 D. 8或14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,

(1)求證:△ABE∽△ADB;
(2)求AB的長(zhǎng);
(3)延長(zhǎng)DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中表示兩人離A地的距離s(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)表示乙離A地的距離與時(shí)間關(guān)系的圖象是 (填);

(2)甲的速度是 km/h,乙的速度是 km/h;

(3)甲出發(fā)多少小時(shí)兩人恰好相距5km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且經(jīng)過(guò)點(diǎn)(﹣1,0),康康依據(jù)圖象寫出了四個(gè)結(jié)論:
①如果點(diǎn)(﹣ ,y1)和(2,y2)都在拋物線上,那么y1<y2;
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的實(shí)數(shù));
=﹣3.
康康所寫的四個(gè)結(jié)論中,正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中, 厘米, 厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使BPDCQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BDBE.以下四個(gè)結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案